1.300258628=(85.76721429((2.8)^2– (0.55+d)^2)(10)^3)/(4(0.55+d)(d) (10)^6 )
You asked:
Solve the equation \(1.300258628 = \frac{85.76721429 \left({2.8}^{2} - {\left( 0.55 + d \right)}^{2}\right) \cdot {10}^{3}}{4 \left(0.55 + d\right) \cdot d \cdot {10}^{6}}\) for the variable \(d\).
MathBot Answer:
The 2 solutions to the equation are: \[\begin{aligned}d &= - \frac{2954912917319}{10573603452580} + \frac{2 \sqrt{350039893506992070065209}}{2643400863145} \approx 0.16817546\\d &= - \frac{2954912917319}{10573603452580} - \frac{2 \sqrt{350039893506992070065209}}{2643400863145} \approx -0.72709805\end{aligned}\]