cos x = 0,707
You asked:
Given \(\cos\left( x \right) = 0\) evaluate the expression \(707\).
MathBot Answer:
The principal value in \(0 \le x \le \pi\) is \(x \approx 1.5707963\)
The real solutions are: \[\begin{aligned}x &= \left\{\frac{\pi \left(1 + 4 n\right)}{2}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 1.5707963\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\frac{\pi \left(3 + 4 n\right)}{2}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 4.712389\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}\]
By substituting the principal value into the expression, we find that: $$\begin{aligned}707 \approx 707\end{aligned}$$