1,230(1+r)^25=8,980

asked by guest
on Jan 09, 2025 at 10:34 am



You asked:

Solve the equation 1,230(1+r)25=8,9801,230 {\left( 1 + r \right)}^{25} = 8,980 for the variable rr.

MathBot Answer:

The solutions are given by the formula: r=(1+123242589825cos(2πk25)123)+123242589825sin(2πk25)123ir = \left(-1 + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} \cos{\left(\frac{2 \pi k}{25} \right)}}{123}\right) + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} \sin{\left(\frac{2 \pi k}{25} \right)}}{123} i where kk is an integer in 0k<250 \le k < 25.

There is 11 real solution.

There are 2424 solutions with nonzero imaginary part.


Real solutions: r=1+1232425898251230.082766596\begin{aligned}r &= -1 + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898}}{123} \\&\approx 0.082766596\end{aligned}


Solutions with nonzero imaginary part (99 of 2424 displayed): r=1+123242589825cos(2π25)123+123242589825isin(2π25)1230.048749492+0.2692731ir=1+123242589825cos(4π25)123+123242589825isin(4π25)1230.051164399+0.52162679ir=1+123242589825cos(6π25)123+123242589825isin(6π25)1230.21069712+0.74120474ir=1+123242589825cos(8π25)123+123242589825isin(8π25)1230.41982465+0.91421007ir=1+123242589825(14+54)123+123242589825i58+581230.66540672+1.0297722ir=1+123242589825cos(12π25)123+123242589825isin(12π25)1230.93201252+1.08063ir=1123242589825cos(11π25)123+123242589825isin(11π25)1231.2028902+1.0635878ir=1123242589825cos(9π25)123+123242589825isin(9π25)1231.4610196+0.97971651ir=1123242589825cos(7π25)123+123242589825isin(7π25)1231.6901814+0.834286i\begin{aligned}r &= -1 + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} \cos{\left(\frac{2 \pi}{25} \right)}}{123} + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} i \sin{\left(\frac{2 \pi}{25} \right)}}{123} \\&\approx 0.048749492 + 0.2692731 i\\r &= -1 + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} \cos{\left(\frac{4 \pi}{25} \right)}}{123} + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} i \sin{\left(\frac{4 \pi}{25} \right)}}{123} \\&\approx -0.051164399 + 0.52162679 i\\r &= -1 + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} \cos{\left(\frac{6 \pi}{25} \right)}}{123} + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} i \sin{\left(\frac{6 \pi}{25} \right)}}{123} \\&\approx -0.21069712 + 0.74120474 i\\r &= -1 + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} \cos{\left(\frac{8 \pi}{25} \right)}}{123} + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} i \sin{\left(\frac{8 \pi}{25} \right)}}{123} \\&\approx -0.41982465 + 0.91421007 i\\r &= -1 + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} \left(- \frac{1}{4} + \frac{\sqrt{5}}{4}\right)}{123} + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{123} \\&\approx -0.66540672 + 1.0297722 i\\r &= -1 + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} \cos{\left(\frac{12 \pi}{25} \right)}}{123} + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} i \sin{\left(\frac{12 \pi}{25} \right)}}{123} \\&\approx -0.93201252 + 1.08063 i\\r &= -1 - \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} \cos{\left(\frac{11 \pi}{25} \right)}}{123} + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} i \sin{\left(\frac{11 \pi}{25} \right)}}{123} \\&\approx -1.2028902 + 1.0635878 i\\r &= -1 - \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} \cos{\left(\frac{9 \pi}{25} \right)}}{123} + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} i \sin{\left(\frac{9 \pi}{25} \right)}}{123} \\&\approx -1.4610196 + 0.97971651 i\\r &= -1 - \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} \cos{\left(\frac{7 \pi}{25} \right)}}{123} + \frac{123^{\frac{24}{25}} \cdot \sqrt[25]{898} i \sin{\left(\frac{7 \pi}{25} \right)}}{123} \\&\approx -1.6901814 + 0.834286 i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.