$\log_{4}\left( 0.2 \cdot \log_{125}\left( 0.125 \right) \right)$
You asked:
MathBot Answer:
\[\log_{4}\left( 0.2 \cdot \log_{125}\left( 0.125 \right) \right) = \frac{\log{\left(\frac{\log{\left(8 \right)}}{5 \log{\left(125 \right)}} \right)} + i \pi}{\log{\left(4 \right)}}\]
\[\begin{aligned}\log_{4}\left( 0.2 \cdot \log_{125}\left( 0.125 \right) \right)& = \log{\left(\frac{2}{10} \cdot \log{\left(\frac{125}{1000} \right)} \right)}\\& = \log{\left(\frac{2}{10} \cdot \log{\left(\frac{1}{8} \right)} \right)}\\& = \log{\left(\frac{2}{10} \cdot - \cdot \frac{1}{\log{\left(125 \right)}} \cdot \log{\left(8 \right)} \right)}\\& = \log{\left(\frac{1}{5} \cdot - \cdot \frac{1}{\log{\left(125 \right)}} \cdot \log{\left(8 \right)} \right)}\\& = \log{\left(- \frac{1}{5} \cdot \frac{1}{\log{\left(125 \right)}} \cdot \log{\left(8 \right)} \right)}\\& = \frac{1}{\log{\left(4 \right)}} \cdot \left(\pi \cdot i + \log{\left(\frac{1}{5} \cdot \frac{1}{\log{\left(125 \right)}} \cdot \log{\left(8 \right)} \right)}\right)\end{aligned}\]