log4(0.2log125(0.125))\log_{4}\left( 0.2 \cdot \log_{125}\left( 0.125 \right) \right)

asked by guest
on Nov 22, 2024 at 10:25 am



You asked:

Evaluate the expression: log4(0.2log125(0.125))\log_{4}\left( 0.2 \log_{125}\left( 0.125 \right) \right)

MathBot Answer:

log4(0.2log125(0.125))=log(log(8)5log(125))+iπlog(4)\log_{4}\left( 0.2 \log_{125}\left( 0.125 \right) \right) = \frac{\log{\left(\frac{\log{\left(8 \right)}}{5 \log{\left(125 \right)}} \right)} + i \pi}{\log{\left(4 \right)}}


log4(0.2log125(0.125))=log(210log(1251000))=log(210log(18))=log(2101log(125)log(8))=log(151log(125)log(8))=log(151log(125)log(8))=1log(4)(πi+log(151log(125)log(8)))\begin{aligned}\log_{4}\left( 0.2 \log_{125}\left( 0.125 \right) \right)&=\log{\left(\frac{2}{10} \cdot \log{\left(\frac{125}{1000} \right)} \right)}\\&=\log{\left(\frac{2}{10} \cdot \log{\left(\frac{1}{8} \right)} \right)}\\&=\log{\left(\frac{2}{10} \cdot - \cdot \frac{1}{\log{\left(125 \right)}} \cdot \log{\left(8 \right)} \right)}\\&=\log{\left(\frac{1}{5} \cdot - \cdot \frac{1}{\log{\left(125 \right)}} \cdot \log{\left(8 \right)} \right)}\\&=\log{\left(- \frac{1}{5} \cdot \frac{1}{\log{\left(125 \right)}} \cdot \log{\left(8 \right)} \right)}\\&=\frac{1}{\log{\left(4 \right)}} \cdot \left(\pi \cdot i + \log{\left(\frac{1}{5} \cdot \frac{1}{\log{\left(125 \right)}} \cdot \log{\left(8 \right)} \right)}\right)\end{aligned}