((1)/(x-1)+(1)/(x+1))/(x)
You asked:
Evaluate the expression: \(\frac{\frac{1}{x - 1} + \frac{1}{x + 1}}{x}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{\frac{1}{x - 1} + \frac{1}{x + 1}}{x} = \frac{\frac{1}{x + 1} + \frac{1}{x - 1}}{x} \)
Expanded
\[\frac{\frac{1}{x - 1} + \frac{1}{x + 1}}{x} = \frac{1}{x^{2} + x} + \frac{1}{x^{2} - x}\]
Factored
\[\frac{\frac{1}{x - 1} + \frac{1}{x + 1}}{x} = \frac{2}{\left(x - 1\right) \left(x + 1\right)}\]