(20)/(1+125e^(-0.8(6.413)))

asked by guest
on Nov 26, 2024 at 6:22 pm



You asked:

Evaluate the expression: 201+125e(0.86.413)\frac{20}{1 + 125 {e}^{-\left( 0.8 \cdot 6.413 \right)}}

MathBot Answer:

201+125e(0.86.413)=20125e64131250+111.4990488337761165987858946651385\frac{20}{1 + 125 {e}^{-\left( 0.8 \cdot 6.413 \right)}} = \frac{20}{\frac{125}{e^{\frac{6413}{1250}}} + 1} \approx 11.4990488337761165987858946651385


201+125e(0.86.413)=2011+125e810(6+4131000)=2011+125e81064131000=2011+125e4564131000=2011+125e64131250=2011+1251e64131250=2011+125e64131250\begin{aligned}\frac{20}{1 + 125 {e}^{-\left( 0.8 \cdot 6.413 \right)}}&=20 \cdot \frac{1}{1 + 125 \cdot e^{- \frac{8}{10} \cdot \left(6 + \frac{413}{1000}\right)}}\\&=20 \cdot \frac{1}{1 + 125 \cdot e^{- \frac{8}{10} \cdot \frac{6413}{1000}}}\\&=20 \cdot \frac{1}{1 + 125 \cdot e^{- \frac{4}{5} \cdot \frac{6413}{1000}}}\\&=20 \cdot \frac{1}{1 + 125 \cdot e^{- \frac{6413}{1250}}}\\&=20 \cdot \frac{1}{1 + 125 \cdot \frac{1}{e^{\frac{6413}{1250}}}}\\&=20 \cdot \frac{1}{1 + 125 \cdot e^{- \frac{6413}{1250}}}\end{aligned}


ee is Euler's number, a mathematical constant that is approximately 2.718282.71828.