n=113(14(2n1)2)=?\prod_{n=1}^{13}\left(1-\frac{4}{(2n-1)^2}\right)=?

asked by guest
on Jan 25, 2025 at 11:13 am



You asked:

Evaluate the expression: n=11314(2n1)2\prod_{n = 1}^{13}{1 - \frac{4}{{\left( 2 n - 1 \right)}^{2}}}

MathBot Answer:

Evaluated



n=11314(2n1)2=2725\displaystyle \prod_{n = 1}^{13}{1 - \frac{4}{{\left( 2 n - 1 \right)}^{2}}} = - \frac{27}{25}


Expanded

n=11314(2n1)2=n=113(144n24n+1)\prod_{n = 1}^{13}{1 - \frac{4}{{\left( 2 n - 1 \right)}^{2}}} = \prod_{n=1}^{13} \left(1 - \frac{4}{4 n^{2} - 4 n + 1}\right)