2×0.34×1.6×10^-19/9.1×10^-31
You asked:
MathBot Answer:
\[\frac{2 \cdot 0.34 \cdot 1.6 \cdot {10}^{-19}}{9.1} \cdot {10}^{-31} = \frac{17}{14218750000000000000000000000000000000000000000000000} = 0.0000000000000000000000000000000000000000000000000011\overline{956043}\]
\[\begin{aligned}\frac{2 \cdot 0.34 \cdot 1.6 \cdot {10}^{-19}}{9.1} \cdot {10}^{-31}& = 2 \cdot \frac{34}{100} \cdot \left(1 + \frac{6}{10}\right) \cdot \frac{1}{10^{19}} \cdot \frac{1}{9 + \frac{1}{10}} \cdot \frac{1}{10^{31}}\\& = 2 \cdot \frac{34}{100} \cdot \left(1 + \frac{3}{5}\right) \cdot \frac{1}{10^{19}} \cdot \frac{1}{9 + \frac{1}{10}} \cdot \frac{1}{10^{31}}\\& = 2 \cdot \frac{34}{100} \cdot \frac{8}{5} \cdot \frac{1}{10^{19}} \cdot \frac{1}{9 + \frac{1}{10}} \cdot \frac{1}{10^{31}}\\& = 2 \cdot \frac{34}{100} \cdot \frac{8}{5} \cdot \frac{1}{10000000000000000000} \cdot \frac{1}{9 + \frac{1}{10}} \cdot \frac{1}{10^{31}}\\& = 2 \cdot \frac{34}{100} \cdot \frac{8}{5} \cdot \frac{1}{10000000000000000000} \cdot \frac{1}{\frac{91}{10}} \cdot \frac{1}{10^{31}}\\& = 2 \cdot \frac{34}{100} \cdot \frac{8}{5} \cdot \frac{1}{10000000000000000000} \cdot \frac{10}{91} \cdot \frac{1}{10^{31}}\\& = 2 \cdot \frac{34}{100} \cdot \frac{8}{5} \cdot \frac{1}{10000000000000000000} \cdot \frac{10}{91} \cdot \frac{1}{10000000000000000000000000000000}\\& = \frac{68}{100} \cdot \frac{8}{5} \cdot \frac{1}{10000000000000000000} \cdot \frac{10}{91} \cdot \frac{1}{10000000000000000000000000000000}\\& = \frac{17}{25} \cdot \frac{8}{5} \cdot \frac{1}{10000000000000000000} \cdot \frac{10}{91} \cdot \frac{1}{10000000000000000000000000000000}\\& = \frac{136}{125} \cdot \frac{1}{10000000000000000000} \cdot \frac{10}{91} \cdot \frac{1}{10000000000000000000000000000000}\\& = \frac{17}{156250000000000000000} \cdot \frac{10}{91} \cdot \frac{1}{10000000000000000000000000000000}\\& = \frac{17}{1421875000000000000000} \cdot \frac{1}{10000000000000000000000000000000}\\& = \frac{17}{14218750000000000000000000000000000000000000000000000}\end{aligned}\]