\frac{\left(3-6i\right)\cdot \left(-\frac{1}{3}i+1\right)\:}{-2+i\:}\cdot \frac{2-i}{2-i}
You asked:
MathBot Answer:
Evaluated
\(\displaystyle \frac{\left(3 - 6 i\right) \cdot \left(-\left( \frac{1}{3} \cdot i \right) + 1\right)}{-2 + i} \cdot \frac{2 - i}{2 - i} = \frac{\left(-2 - i\right) \left(1 - \frac{i}{3}\right) \left(2 - i\right) \left(2 + i\right) \left(3 - 6 i\right)}{25} \)
Expanded
\[\frac{\left(3 - 6 i\right) \cdot \left(-\left( \frac{1}{3} \cdot i \right) + 1\right)}{-2 + i} \cdot \frac{2 - i}{2 - i} = - \frac{9}{5} + \frac{13 i}{5}\]
Factored
\[\frac{\left(3 - 6 i\right) \cdot \left(-\left( \frac{1}{3} \cdot i \right) + 1\right)}{-2 + i} \cdot \frac{2 - i}{2 - i} = \left(-2 - i\right) \left(\frac{1}{25} - \frac{2 i}{25}\right) \left(2 - i\right) \left(2 + i\right) \left(3 - i\right)\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).