(x+2)/(x^(2)-4)*(x^(3)-8)/(x-4)
You asked:
Evaluate the expression: \(\frac{\frac{x + 2}{{x}^{2} - 4} \cdot \left({x}^{3} - 8\right)}{x - 4}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{\frac{x + 2}{{x}^{2} - 4} \cdot \left({x}^{3} - 8\right)}{x - 4} = \frac{\left(x^{3} - 8\right) \left(x + 2\right)}{\left(x^{2} - 4\right) \left(x - 4\right)} \)
Expanded
\[\frac{\frac{x + 2}{{x}^{2} - 4} \cdot \left({x}^{3} - 8\right)}{x - 4} = \frac{x^{4}}{x^{3} - 4 x^{2} - 4 x + 16} + \frac{2 x^{3}}{x^{3} - 4 x^{2} - 4 x + 16} - \frac{8 x}{x^{3} - 4 x^{2} - 4 x + 16} - \frac{16}{x^{3} - 4 x^{2} - 4 x + 16}\]
Factored
\[\frac{\frac{x + 2}{{x}^{2} - 4} \cdot \left({x}^{3} - 8\right)}{x - 4} = \frac{x^{2} + 2 x + 4}{x - 4}\]