2^31+2^28/2^29+2^26
You asked:
Evaluate the expression: \({2}^{31} + \frac{{2}^{28}}{{2}^{29}} + {2}^{26}\)
MathBot Answer:
\[{2}^{31} + \frac{{2}^{28}}{{2}^{29}} + {2}^{26} = \frac{4429185025}{2} = 2214592512.5\]
\[\begin{aligned}{2}^{31} + \frac{{2}^{28}}{{2}^{29}} + {2}^{26}& = 2^{31} + 2^{28} \cdot \frac{1}{2^{29}} + 2^{26}\\& = 2147483648 + 2^{28} \cdot \frac{1}{2^{29}} + 2^{26}\\& = 2147483648 + 268435456 \cdot \frac{1}{2^{29}} + 2^{26}\\& = 2147483648 + \frac{268435456}{536870912} + 2^{26}\\& = 2147483648 + \frac{1}{2} + 2^{26}\\& = 2147483648 + \frac{1}{2} + 67108864\\& = \frac{4294967297}{2} + 67108864\\& = \frac{4429185025}{2}\end{aligned}\]