x*y=0.199912332675918863522787694816

asked by guest
on Nov 17, 2024 at 3:41 am



You asked:

Investigate the equation: \(x y = 0.199912332675918863522787694816\).

MathBot Answer:

The graph of the equation \(x y = 0.199912332675918863522787694816\) is a hyperbola.


The coordinates of its foci are: \(\left(- \frac{\sqrt{6247260396122464485087115463}}{125000000000000}, - \frac{\sqrt{6247260396122464485087115463}}{125000000000000}\right)\) and \(\left(\frac{\sqrt{6247260396122464485087115463}}{125000000000000}, \frac{\sqrt{6247260396122464485087115463}}{125000000000000}\right)\).

The coordinates of its vertices are: \(\left(- \frac{\sqrt{12494520792244928970174230926}}{250000000000000}, - \frac{\sqrt{12494520792244928970174230926}}{250000000000000}\right)\) and \(\left(\frac{\sqrt{12494520792244928970174230926}}{250000000000000}, \frac{\sqrt{12494520792244928970174230926}}{250000000000000}\right)\).

The asymptotes have equations: \(- \sqrt{12494520792244928970174230926} x = 0\) and \(- \sqrt{12494520792244928970174230926} y = 0\).