2+$\sqrt{6}$/2- $\sqrt{6}$

asked by guest
on Nov 26, 2024 at 6:23 am



You asked:

Evaluate the expression: \(2 + \frac{\sqrt{6}}{2} - \sqrt{6}\)

MathBot Answer:

\[2 + \frac{\sqrt{6}}{2} - \sqrt{6} = 2 - \frac{\sqrt{6}}{2} \approx 0.77525512860841095090135796264705\]


\[\begin{aligned}2 + \frac{\sqrt{6}}{2} - \sqrt{6}& = 2 + \sqrt{6} \cdot \frac{1}{2} - \sqrt{6}\\& = 2 + \frac{1}{2} \cdot \sqrt{6} - \sqrt{6}\\& = \left(2 + \frac{1}{2} \cdot \sqrt{6}\right) - \sqrt{6}\\& = 2 - \frac{1}{2} \cdot \sqrt{6}\end{aligned}\]