cos2 theta - sin2 theta = 1/2 find tan2 theta

asked by guest
on Jan 24, 2025 at 7:08 pm



MathBot Answer:

θtan(2)=2tan(2)4cos(π4+2)θ \tan{\left(2 \right)} = \frac{\sqrt{2} \tan{\left(2 \right)}}{4 \cos{\left(\frac{\pi}{4} + 2 \right)}}


θ(sin(2)+cos(2))=12θ=12(sin(2)+cos(2))\begin{aligned}θ \left(- \sin{\left(2 \right)} + \cos{\left(2 \right)}\right) &= \frac{1}{2}\\θ &= \frac{1}{2 \left(- \sin{\left(2 \right)} + \cos{\left(2 \right)}\right)}\end{aligned}

By substituting this value into the expression, we find that: θtan(2)=24cos(π4+2)tan(2)=2tan(2)4cos(π4+2)\begin{aligned}θ \tan{\left(2 \right)} &= \frac{\sqrt{2}}{4 \cos{\left(\frac{\pi}{4} + 2 \right)}} \tan{\left(2 \right)}\\&= \frac{\sqrt{2} \tan{\left(2 \right)}}{4 \cos{\left(\frac{\pi}{4} + 2 \right)}}\end{aligned}