0,145*x^2-0.655*x+0.288
MathBot Answer:
The sum of \(0\) and \(145 {x}^{2} - 0.655 x + 0.288\) is:
\[\begin{aligned}&=\left(0\right) + \left(145 {x}^{2} - 0.655 x + 0.288\right) \\\\ &= 145 x^{2} - 655 \cdot \frac{1}{1000} x + 288 \cdot \frac{1}{1000} \\\\ &= 145 x^{2} - \frac{131 x}{200} + \frac{36}{125} \\\\\end{aligned}\]
The difference of \(0\) and \(145 {x}^{2} - 0.655 x + 0.288\) is:
\[\begin{aligned}&=\left(0\right) - \left(145 {x}^{2} - 0.655 x + 0.288\right) \\\\ &= - 145 x^{2} + 655 \cdot \frac{1}{1000} x - \frac{36}{125} \\\\ &= - 145 x^{2} + \frac{131 x}{200} - \frac{36}{125} \\\\\end{aligned}\]
The product of \(0\) and \(145 {x}^{2} - 0.655 x + 0.288\) is:
\[\begin{aligned}&=\left(0\right) \cdot \left(145 {x}^{2} - 0.655 x + 0.288\right) \\\\ &= 0 \\\\\end{aligned}\]
The quotient of \(0\) and \(145 {x}^{2} - 0.655 x + 0.288\) is:
\[\begin{aligned}&= \frac{\left(0\right)}{\left(145 {x}^{2} - 0.655 x + 0.288\right)} \\\\ &= 0 \\\\\end{aligned}\]