(3-L/2)^2 * L - 2(3-L/2) - L

asked by guest
on Nov 26, 2024 at 6:36 pm



You asked:

Evaluate the expression: \({\left( 3 - \frac{L}{2} \right)}^{2} L - 2 \cdot \left(3 - \frac{L}{2}\right) - L\)

MathBot Answer:

Evaluated



\(\displaystyle {\left( 3 - \frac{L}{2} \right)}^{2} L - 2 \cdot \left(3 - \frac{L}{2}\right) - L = L \left(3 - \frac{L}{2}\right)^{2} - 6 \)


Expanded

\[{\left( 3 - \frac{L}{2} \right)}^{2} L - 2 \cdot \left(3 - \frac{L}{2}\right) - L = \frac{L^{3}}{4} - 3 L^{2} + 9 L - 6\]


Factored

\[{\left( 3 - \frac{L}{2} \right)}^{2} L - 2 \cdot \left(3 - \frac{L}{2}\right) - L = \frac{L^{3} - 12 L^{2} + 36 L - 24}{4}\]