cos(3x)=0.7

-210 <= x <= 600

asked by guest
on Jan 21, 2025 at 8:15 am



MathBot Answer:

\(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{200 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{200 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 66 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 66 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{196 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{196 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{194 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{194 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 64 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 64 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{190 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{190 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{188 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{188 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 62 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 62 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{184 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{184 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{182 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{182 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 60 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 60 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{178 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{178 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{176 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{176 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 58 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 58 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{172 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{172 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{170 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{170 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 56 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 56 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{166 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{166 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{164 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{164 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 54 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 54 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{160 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{160 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{158 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{158 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 52 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 52 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{154 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{154 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{152 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{152 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 50 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 50 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{148 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{148 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{146 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{146 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 48 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 48 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{142 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{142 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{140 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{140 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 46 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 46 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{136 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{136 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{134 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{134 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 44 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 44 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{130 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{130 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{128 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{128 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 42 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 42 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{124 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{124 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{122 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{122 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 40 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 40 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{118 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{118 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{116 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{116 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 38 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 38 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{112 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{112 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{110 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{110 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 36 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 36 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{106 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{106 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{104 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{104 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 34 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 34 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{100 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{100 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{98 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{98 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 32 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 32 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{94 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{94 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{92 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{92 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 30 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 30 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{88 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{88 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{86 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{86 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 28 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 28 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{82 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{82 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{80 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{80 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 26 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 26 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{76 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{76 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{74 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{74 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 24 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 24 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{70 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{70 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{68 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{68 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 22 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 22 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{64 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{64 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{62 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{62 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 20 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 20 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{58 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{58 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{56 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{56 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 18 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 18 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{52 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{52 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{50 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{50 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 16 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 16 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{46 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{46 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{44 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{44 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 14 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 14 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{40 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{40 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{38 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{38 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 12 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 12 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{34 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{34 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{32 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{32 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 10 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 10 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{28 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{28 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{26 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{26 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 8 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 8 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{22 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{22 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{20 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{20 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 6 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 6 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{16 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{16 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{14 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{14 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 4 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 4 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{10 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{10 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{8 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{8 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 2 \pi - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - 2 \pi + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{4 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{4 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{2 \pi}{3} - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{2 \pi}{3} + \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{2 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{4 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 2 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{8 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{10 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 4 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{14 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{16 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 6 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{20 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{22 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 8 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{26 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{28 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 10 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{32 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{34 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 12 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{38 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{40 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 14 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{44 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{46 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 16 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{50 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{52 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 18 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{56 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{58 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 20 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{62 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{64 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 22 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{68 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{70 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 24 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{74 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{76 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 26 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{80 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{82 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 28 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{86 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{88 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 30 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{92 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{94 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 32 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{98 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{100 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 34 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{104 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{106 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 36 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{110 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{112 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 38 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{116 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{118 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 40 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{122 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{124 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 42 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{128 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{130 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 44 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{134 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{136 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 46 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{140 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{142 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 48 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{146 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{148 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 50 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{152 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{154 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 52 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{158 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{160 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 54 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{164 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{166 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 56 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{170 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{172 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 58 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{176 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{178 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 60 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{182 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{184 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 62 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{188 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{190 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 64 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{194 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{196 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 66 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{200 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{202 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 68 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{206 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{208 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 70 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{212 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{214 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 72 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{218 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{220 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 74 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{224 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{226 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 76 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{230 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{232 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 78 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{236 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{238 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 80 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{242 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{244 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 82 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{248 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{250 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 84 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{254 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{256 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 86 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{260 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{262 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 88 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{266 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{268 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 90 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{272 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{274 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 92 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{278 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{280 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 94 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{284 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{286 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 96 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{290 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{292 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 98 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{296 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{298 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 100 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{302 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{304 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 102 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{308 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{310 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 104 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{314 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{316 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 106 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{320 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{322 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 108 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{326 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{328 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 110 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{332 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{334 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 112 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{338 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{340 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 114 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{344 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{346 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 116 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{350 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{352 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 118 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{356 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{358 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 120 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{362 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{364 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 122 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{368 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{370 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 124 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{374 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{376 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 126 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{380 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{382 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 128 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{386 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{388 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 130 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{392 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{394 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 132 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{398 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{400 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 134 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{404 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{406 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 136 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{410 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{412 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 138 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{416 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{418 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 140 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{422 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{424 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 142 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{428 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{430 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 144 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{434 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{436 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 146 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{440 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{442 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 148 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{446 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{448 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 150 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{452 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{454 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 152 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{458 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{460 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 154 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{464 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{466 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 156 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{470 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{472 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 158 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{476 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{478 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 160 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{482 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{484 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 162 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{488 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{490 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 164 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{494 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{496 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 166 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{500 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{502 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 168 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{506 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{508 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 170 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{512 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{514 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 172 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{518 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{520 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 174 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{524 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{526 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 176 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{530 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{532 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 178 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{536 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{538 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 180 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{542 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{544 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 182 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{548 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{550 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 184 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{554 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{556 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 186 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{560 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{562 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 188 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{566 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{568 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 190 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{572 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{2 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{4 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 2 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{8 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{10 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 4 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{14 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{16 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 6 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{20 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{22 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 8 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{26 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{28 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 10 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{32 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{34 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 12 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{38 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{40 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 14 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{44 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{46 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 16 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{50 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{52 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 18 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{56 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{58 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 20 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{62 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{64 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 22 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{68 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{70 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 24 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{74 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{76 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 26 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{80 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{82 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 28 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{86 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{88 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 30 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{92 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{94 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 32 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{98 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{100 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 34 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{104 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{106 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 36 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{110 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{112 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 38 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{116 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{118 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 40 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{122 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{124 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 42 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{128 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{130 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 44 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{134 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{136 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 46 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{140 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{142 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 48 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{146 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{148 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 50 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{152 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{154 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 52 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{158 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{160 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 54 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{164 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{166 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 56 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{170 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{172 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 58 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{176 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{178 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 60 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{182 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{184 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 62 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{188 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{190 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 64 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{194 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{196 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 66 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{200 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{202 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 68 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{206 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{208 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 70 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{212 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{214 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 72 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{218 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{220 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 74 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{224 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{226 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 76 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{230 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{232 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 78 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{236 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{238 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 80 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{242 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{244 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 82 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{248 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{250 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 84 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{254 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{256 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 86 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{260 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{262 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 88 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{266 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{268 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 90 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{272 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{274 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 92 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{278 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{280 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 94 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{284 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{286 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 96 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{290 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{292 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 98 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{296 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{298 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 100 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{302 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{304 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 102 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{308 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{310 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 104 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{314 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{316 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 106 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{320 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{322 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 108 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{326 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{328 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 110 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{332 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{334 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 112 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{338 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{340 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 114 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{344 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{346 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 116 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{350 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{352 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 118 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{356 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{358 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 120 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{362 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{364 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 122 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{368 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{370 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 124 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{374 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{376 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 126 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{380 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{382 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 128 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{386 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{388 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 130 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{392 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{394 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 132 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{398 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{400 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 134 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{404 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{406 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 136 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{410 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{412 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 138 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{416 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{418 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 140 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{422 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{424 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 142 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{428 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{430 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 144 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{434 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{436 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 146 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{440 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{442 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 148 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{446 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{448 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 150 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{452 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{454 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 152 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{458 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{460 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 154 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{464 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{466 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 156 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{470 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{472 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 158 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{476 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{478 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 160 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{482 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{484 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 162 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{488 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{490 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 164 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{494 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{496 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 166 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{500 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{502 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 168 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{506 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{508 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 170 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{512 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{514 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 172 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{518 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{520 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 174 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{524 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{526 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 176 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{530 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{532 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 178 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{536 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{538 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 180 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{542 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{544 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 182 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{548 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{550 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 184 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{554 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{556 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 186 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{560 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{562 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 188 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{566 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{568 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + 190 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{51}}{7} \right)}}{3} + \frac{572 \pi}{3}\) are the solutions to the equation \(\cos\left( 3 x \right) = 0.7\) that satisfy the inequality \(-210 \le x \le 600\).