((4)/(h+5)) + ((7)/((h+5)^2))
You asked:
Evaluate the expression: \(\frac{4}{h + 5} + \frac{7}{{\left( h + 5 \right)}^{2}}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{4}{h + 5} + \frac{7}{{\left( h + 5 \right)}^{2}} = \frac{4}{h + 5} + \frac{7}{\left(h + 5\right)^{2}} \)
Expanded
\[\frac{4}{h + 5} + \frac{7}{{\left( h + 5 \right)}^{2}} = \frac{7}{h^{2} + 10 h + 25} + \frac{4}{h + 5}\]
Factored
\[\frac{4}{h + 5} + \frac{7}{{\left( h + 5 \right)}^{2}} = \frac{4 h + 27}{\left(h + 5\right)^{2}}\]