log7(7^5/6)
asked by guest on Nov 25, 2024 at 3:17 am
You asked:
MathBot Answer:
log7(756)=−log(6)log(7)+5≈4.0792177788383982096812727548238\log_{7}\left( \frac{{7}^{5}}{6} \right) = - \frac{\log{\left(6 \right)}}{\log{\left(7 \right)}} + 5 \approx 4.0792177788383982096812727548238log7(675)=−log(7)log(6)+5≈4.0792177788383982096812727548238
log7(756)=log(75⋅16)=log(168076)=5−1log(7)⋅log(6)\begin{aligned}\log_{7}\left( \frac{{7}^{5}}{6} \right)&=\log{\left(7^{5} \cdot \frac{1}{6} \right)}\\&=\log{\left(\frac{16807}{6} \right)}\\&=5 - \frac{1}{\log{\left(7 \right)}} \cdot \log{\left(6 \right)}\end{aligned}log7(675)=log(75⋅61)=log(616807)=5−log(7)1⋅log(6)