simplify

[3p/(12pq + 4q)] ÷ [8p^2/(6p^2 + 2pq)]

asked by guest
on Nov 18, 2024 at 9:30 am



You asked:

Simplify the expression: 3p12pq+4q8p26p2+2pq\frac{\frac{3 p}{12 p q + 4 q}}{\frac{8 {p}^{2}}{6 {p}^{2} + 2 p q}}

MathBot Answer:

Simplified:

3p12pq+4q8p26p2+2pq=3(3p+q)16q(3p+1) \frac{\frac{3 p}{12 p q + 4 q}}{\frac{8 {p}^{2}}{6 {p}^{2} + 2 p q}} = \frac{3 \cdot \left(3 p + q\right)}{16 q \left(3 p + 1\right)}


3p(12pq+4q)8p26p2+2pq=3p(6p2+2pq)(4q+12pq)8p2=3p(3p+q)4p(4q+12pq)=3q+9p16q+48pq=3(3p+q)16q(3p+1)\begin{aligned}\frac{3 p}{\left(12 p q + 4 q\right) \frac{8 p^{2}}{6 p^{2} + 2 p q}}&=\frac{3 p \left(6 p^{2} + 2 p q\right)}{\left(4 q + 12 p q\right) 8 p^{2}}\\&=\frac{3 p \left(3 p + q\right)}{4 p \left(4 q + 12 p q\right)}\\&=\frac{3 q + 9 p}{16 q + 48 p q}\\&=\frac{3 \cdot \left(3 p + q\right)}{16 q \left(3 p + 1\right)}\end{aligned}


Expanded:

3p12pq+4q8p26p2+2pq=9p48pq+16q+3q48pq+16q \frac{\frac{3 p}{12 p q + 4 q}}{\frac{8 {p}^{2}}{6 {p}^{2} + 2 p q}} = \frac{9 p}{48 p q + 16 q} + \frac{3 q}{48 p q + 16 q}


Factored:

3p12pq+4q8p26p2+2pq=3(3p+q)16q(3p+1) \frac{\frac{3 p}{12 p q + 4 q}}{\frac{8 {p}^{2}}{6 {p}^{2} + 2 p q}} = \frac{3 \cdot \left(3 p + q\right)}{16 q \left(3 p + 1\right)}