914.06 = 50/(1+Y)^1 + 1050(1+Y)^2

asked by guest
on Jan 09, 2025 at 10:22 am



You asked:

Solve the equation 914.06=50(1+Y)1+1050(1+Y)2914.06 = \frac{50}{{\left( 1 + Y \right)}^{1}} + 1050 {\left( 1 + Y \right)}^{2} for the variable YY.

MathBot Answer:

The 3 solutions to the equation are: Y=16529cos(arctan(13321135270561562500)3)751.9592575Y=119587sin(arctan(13321135270561562500)3)3006529re(1(123i2)914+13321135270561i8750003)7500+6529cos(arctan(13321135270561562500)3)300+i(6529im(1(123i2)914+13321135270561i8750003)7500+6529sin(arctan(13321135270561562500)3)300+19587cos(arctan(13321135270561562500)3)300)0.94510901+2.010143iY=1+19587sin(arctan(13321135270561562500)3)300+6529cos(arctan(13321135270561562500)3)3006529re(1(12+3i2)914+13321135270561i8750003)7500+i(19587cos(arctan(13321135270561562500)3)300+6529sin(arctan(13321135270561562500)3)3006529im(1(12+3i2)914+13321135270561i8750003)7500)0.0956335132.010142i\begin{aligned}Y &= -1 - \frac{\sqrt{6529} \cos{\left(\frac{\arctan{\left(\frac{\sqrt{13321135270561}}{562500} \right)}}{3} \right)}}{75} \approx -1.9592575\\Y &= -1 - \frac{\sqrt{19587} \sin{\left(\frac{\arctan{\left(\frac{\sqrt{13321135270561}}{562500} \right)}}{3} \right)}}{300} - \frac{6529 \operatorname{re}{\left(\frac{1}{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{9}{14} + \frac{\sqrt{13321135270561} i}{875000}}}\right)}}{7500} + \frac{\sqrt{6529} \cos{\left(\frac{\arctan{\left(\frac{\sqrt{13321135270561}}{562500} \right)}}{3} \right)}}{300} + i \left(- \frac{6529 \operatorname{im}{\left(\frac{1}{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{9}{14} + \frac{\sqrt{13321135270561} i}{875000}}}\right)}}{7500} + \frac{\sqrt{6529} \sin{\left(\frac{\arctan{\left(\frac{\sqrt{13321135270561}}{562500} \right)}}{3} \right)}}{300} + \frac{\sqrt{19587} \cos{\left(\frac{\arctan{\left(\frac{\sqrt{13321135270561}}{562500} \right)}}{3} \right)}}{300}\right) \approx -0.94510901 + 2.0 \cdot 10^{-143} i\\Y &= -1 + \frac{\sqrt{19587} \sin{\left(\frac{\arctan{\left(\frac{\sqrt{13321135270561}}{562500} \right)}}{3} \right)}}{300} + \frac{\sqrt{6529} \cos{\left(\frac{\arctan{\left(\frac{\sqrt{13321135270561}}{562500} \right)}}{3} \right)}}{300} - \frac{6529 \operatorname{re}{\left(\frac{1}{\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{9}{14} + \frac{\sqrt{13321135270561} i}{875000}}}\right)}}{7500} + i \left(- \frac{\sqrt{19587} \cos{\left(\frac{\arctan{\left(\frac{\sqrt{13321135270561}}{562500} \right)}}{3} \right)}}{300} + \frac{\sqrt{6529} \sin{\left(\frac{\arctan{\left(\frac{\sqrt{13321135270561}}{562500} \right)}}{3} \right)}}{300} - \frac{6529 \operatorname{im}{\left(\frac{1}{\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{9}{14} + \frac{\sqrt{13321135270561} i}{875000}}}\right)}}{7500}\right) \approx -0.095633513 -2.0 \cdot 10^{-142} i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.