(3a³b^4+6x^5y^6) (3a³b^4-6x^5y^6)
You asked:
Evaluate the expression: \(\left(3 {a}^{3} {b}^{4} + 6 {x}^{5} {y}^{6}\right) \cdot \left(3 {a}^{3} {b}^{4} - 6 {x}^{5} {y}^{6}\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(3 {a}^{3} {b}^{4} + 6 {x}^{5} {y}^{6}\right) \cdot \left(3 {a}^{3} {b}^{4} - 6 {x}^{5} {y}^{6}\right) = \left(3 a^{3} b^{4} - 6 x^{5} y^{6}\right) \left(3 a^{3} b^{4} + 6 x^{5} y^{6}\right) \)
Expanded
\[\left(3 {a}^{3} {b}^{4} + 6 {x}^{5} {y}^{6}\right) \cdot \left(3 {a}^{3} {b}^{4} - 6 {x}^{5} {y}^{6}\right) = 9 a^{6} b^{8} - 36 x^{10} y^{12}\]
Factored
\[\left(3 {a}^{3} {b}^{4} + 6 {x}^{5} {y}^{6}\right) \cdot \left(3 {a}^{3} {b}^{4} - 6 {x}^{5} {y}^{6}\right) = 9 \left(a^{3} b^{4} - 2 x^{5} y^{6}\right) \left(a^{3} b^{4} + 2 x^{5} y^{6}\right)\]