(7–3)^8×4^3÷(2^3–2^2)^9

asked by guest
on Nov 17, 2024 at 1:24 pm



You asked:

Evaluate the expression: (73)843(2322)9\frac{{\left( 7 - 3 \right)}^{8} \cdot {4}^{3}}{{\left( {2}^{3} - {2}^{2} \right)}^{9}}

MathBot Answer:

(73)843(2322)9=16\frac{{\left( 7 - 3 \right)}^{8} \cdot {4}^{3}}{{\left( {2}^{3} - {2}^{2} \right)}^{9}} = 16


(73)843(2322)9=4843(2322)9=6553643(2322)9=6553664(2322)9=4194304(2322)9=4194304(822)9=4194304(84)9=419430449=4194304262144=16\begin{aligned}\frac{{\left( 7 - 3 \right)}^{8} \cdot {4}^{3}}{{\left( {2}^{3} - {2}^{2} \right)}^{9}}&=\frac{{4}^{8} \cdot {4}^{3}}{{\left( {2}^{3} - {2}^{2} \right)}^{9}}\\&=\frac{65536 \cdot {4}^{3}}{{\left( {2}^{3} - {2}^{2} \right)}^{9}}\\&=\frac{65536 \cdot 64}{{\left( {2}^{3} - {2}^{2} \right)}^{9}}\\&=\frac{4194304}{{\left( {2}^{3} - {2}^{2} \right)}^{9}}\\&=\frac{4194304}{{\left( 8 - {2}^{2} \right)}^{9}}\\&=\frac{4194304}{{\left( 8 - 4 \right)}^{9}}\\&=\frac{4194304}{{4}^{9}}\\&=\frac{4194304}{262144}\\&=16\end{aligned}