1723463
131483.3601
.1723463
131483.3601
5284603
3957449.5533
.5284603
3957449.5533
2.49779248265791420
1.09131128190107020
1.36671371455898421
2.5278683675684418
3.1351976159335321
1.58135163172075921
7.50874976185627818
MathBot Answer:
Original numbers in ascending order: \(.1723463\), \(.5284603\), \(1.09131128190107020\), \(1.36671371455898421\), \(1.58135163172075921\), \(2.49779248265791420\), \(2.5278683675684418\), \(3.1351976159335321\), \(7.50874976185627818\), \(131483.3601\), \(131483.3601\), \(1723463\), \(3957449.5533\), \(3957449.5533\), \(5284603\)
Sum: \( \frac{151859522365914561969799}{10000000000000000} \approx 15185952.2366 \)
Mean: \( \frac{151859522365914561969799}{150000000000000000} \approx 1012396.8158 \)
Sample standard deviation: \( \frac{\sqrt{14767368075512435236716902821528478296520627801829}}{2100000000000000000} \approx 1829920.6379 \)
Median: \( \frac{31351976159335321}{10000000000000000} \approx 3.1352 \)
Mode: \( \frac{1314833601}{10000} \approx 131483.3601 \)
Sum: \( \frac{151859522365914561969799}{10000000000000000} \approx 15185952.2366 \)
Mean: \( \frac{151859522365914561969799}{150000000000000000} \approx 1012396.8158 \)
Sample standard deviation: \( \frac{\sqrt{14767368075512435236716902821528478296520627801829}}{2100000000000000000} \approx 1829920.6379 \)
Median: \( \frac{31351976159335321}{10000000000000000} \approx 3.1352 \)
Mode: \( \frac{1314833601}{10000} \approx 131483.3601 \)