(0 × 2⁻¹) + (1 × 2⁻²) + (1 × 2⁻³) + (1 × 2⁻⁴)
You asked:
Evaluate the expression: \(0 \cdot {2}^{-1} + 1 \cdot {2}^{-2} + 1 \cdot {2}^{-3} + 1 \cdot {2}^{-4}\)
MathBot Answer:
\[0 \cdot {2}^{-1} + 1 \cdot {2}^{-2} + 1 \cdot {2}^{-3} + 1 \cdot {2}^{-4} = \frac{7}{16} = 0.4375\]
\[\begin{aligned}0 \cdot {2}^{-1} + 1 \cdot {2}^{-2} + 1 \cdot {2}^{-3} + 1 \cdot {2}^{-4}& = \frac{0}{2} + 1 \cdot \frac{1}{2^{2}} + 1 \cdot \frac{1}{2^{3}} + 1 \cdot \frac{1}{2^{4}}\\& = 0 + 1 \cdot \frac{1}{2^{2}} + 1 \cdot \frac{1}{2^{3}} + 1 \cdot \frac{1}{2^{4}}\\& = 0 + \frac{1}{4} + 1 \cdot \frac{1}{2^{3}} + 1 \cdot \frac{1}{2^{4}}\\& = 0 + \frac{1}{4} + \frac{1}{8} + 1 \cdot \frac{1}{2^{4}}\\& = 0 + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}\\& = \frac{1}{4} + \frac{1}{8} + \frac{1}{16}\\& = \frac{3}{8} + \frac{1}{16}\\& = \frac{7}{16}\end{aligned}\]