39,366 = 2(3)^n–1
You asked:
Solve the equation \(39,366 = 2 \cdot {3}^{n} - 1\) for the variable \(n\).
MathBot Answer:
The solution is: \[n = \frac{\log{\left(\frac{39367}{2} \right)}}{\log{\left(3 \right)}} \approx 9.0000231\]
39,366 = 2(3)^n–1
You asked:
MathBot Answer:
The solution is: \[n = \frac{\log{\left(\frac{39367}{2} \right)}}{\log{\left(3 \right)}} \approx 9.0000231\]