tan1(x+1)+tan1(x1)=sin1(25)\textrm{tan}^{-1}\left(x+1\right)+\textrm{tan}^{-1}\left(x-1\right)=\textrm{sin}^{-1}\left(\frac{2}{\sqrt{5}}\right)

asked by guest
on Nov 25, 2024 at 1:52 am



You asked:

Solve the equation arctan(x+1)+arctan(x1)=arcsin(25)\arctan\left( x + 1 \right) + \arctan\left( x - 1 \right) = \arcsin\left( \frac{2}{\sqrt{5}} \right) for the variable xx.