solve the problem operator D problem d2ydx2y=12x2ex \frac{d^{2} y}{d x^{2}}-y=12 x^{2} e^{x} sum following the same steps shown i the following sum 2d33x27dy3x4y=e3xCFAE(2m27m4=0)(m8)(m+1)=0m=8m=1y=Ae8x+Rex\begin{array}{l}2 \frac{d^{3}}{3 x^{2}}-7 \frac{d y}{3 x}-4 y=e^{3 x} \\\frac{C F}{A \cdot E}\left(2 m^{2}-7 m-4=0\right) \\(m-8)(m+1)=0 \\m=8 \quad m=-1 \quad y=A e^{8 x}+R e^{-x}\end{array} (2Dy27)y4y=e3xy=12D27D4{e3x}y=e3x12(3)27(3)4y=e3x118214y=e3x17y=e3x7\begin{array}{l}\left(2 D_{y}^{2}-7\right) y-4 y=e^{3 x} \\y=\frac{1}{2 D^{2}-7 D-4}\left\{e^{3 x}\right\} \\y=e^{3 x} \frac{1}{2(3)^{2}-7(3)-4} \\y=e^{3 x}-\frac{1}{18-21-4} \\y=e^{3 x} \frac{1}{7} \\y=-\frac{e^{3 x}}{7}\end{array} y=Ae8x+Bex+e3x17 y=A e^{8 x}+B e^{-x}+e^{3 x}-\frac{1}{7}

asked by guest
on Nov 24, 2024 at 10:44 am



Mathbot Says...

I wasn't able to parse your question, but the HE.NET team is hard at work making me smarter.