secθ-cosθ=(cotθ+cosθ)(tanθ-sinθ)
You asked:
MathBot Answer:
The real solutions are: \[\left\{2 n \pi\; \middle|\; n \in \mathbb{Z}\right\}\]
The complex solutions are: \[\begin{aligned}θ &= \left\{\frac{\pi}{4} + 2 \pi n - \frac{i \log{\left(2 + \sqrt{3} \right)}}{2}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 0.78539816 - 0.65847895 i\; \middle|\; n \in \mathbb{Z}\right\}\\θ &= \left\{\frac{5 \pi}{4} + 2 \pi n - \frac{i \log{\left(2 + \sqrt{3} \right)}}{2}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 3.9269908 - 0.65847895 i\; \middle|\; n \in \mathbb{Z}\right\}\\θ &= \left\{\frac{\pi}{4} + 2 \pi n - \frac{i \log{\left(2 - \sqrt{3} \right)}}{2}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 0.78539816 + 0.65847895 i\; \middle|\; n \in \mathbb{Z}\right\}\\θ &= \left\{\frac{5 \pi}{4} + 2 \pi n - \frac{i \log{\left(2 - \sqrt{3} \right)}}{2}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 3.9269908 + 0.65847895 i\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).