6+6+6+6+6+6+6+6+6+6+6+6+6+8+8/15

asked by guest
on Nov 14, 2024 at 7:27 am



You asked:

Evaluate the expression: \(6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 8 + \frac{8}{15}\)

MathBot Answer:

\[ 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 8 + \frac{8}{15} = \frac{1298}{15} = 86.5\overline{3} \]


The sum can be computed by rewriting each term over a common denominator, where the least common denominator of \(\frac{6}{1}\), \(\frac{6}{1}\), \(\frac{6}{1}\), \(\frac{6}{1}\), \(\frac{6}{1}\), \(\frac{6}{1}\), \(\frac{6}{1}\), \(\frac{6}{1}\), \(\frac{6}{1}\), \(\frac{6}{1}\), \(\frac{6}{1}\), \(\frac{6}{1}\), \(\frac{6}{1}\), \(\frac{8}{1}\), and \(\frac{8}{15}\) is \(15\). \[ \begin{aligned} 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 8 + \frac{8}{15} &= \frac{6 \cdot 15}{1 \cdot 15} + \frac{6 \cdot 15}{1 \cdot 15} + \frac{6 \cdot 15}{1 \cdot 15} + \frac{6 \cdot 15}{1 \cdot 15} + \frac{6 \cdot 15}{1 \cdot 15} + \frac{6 \cdot 15}{1 \cdot 15} + \frac{6 \cdot 15}{1 \cdot 15} + \frac{6 \cdot 15}{1 \cdot 15} + \frac{6 \cdot 15}{1 \cdot 15} + \frac{6 \cdot 15}{1 \cdot 15} + \frac{6 \cdot 15}{1 \cdot 15} + \frac{6 \cdot 15}{1 \cdot 15} + \frac{6 \cdot 15}{1 \cdot 15} + \frac{8 \cdot 15}{1 \cdot 15} + \frac{8 \cdot 1}{15 \cdot 1} \\ &= \frac{90 + 90 + 90 + 90 + 90 + 90 + 90 + 90 + 90 + 90 + 90 + 90 + 90 + 120 + 8}{15} \\ &= \frac{1298}{15} \end{aligned} \]