-(1/0.000855)ln[-ln(0.3046)]=

asked by guest
on Nov 26, 2024 at 12:38 pm



You asked:

Evaluate the expression: (10.000855ln(ln(0.3046)))-\left( \frac{1}{0.000855} \ln\left( -\ln\left( 0.3046 \right) \right) \right)

MathBot Answer:

(10.000855ln(ln(0.3046)))=200000log(log(15235000))171202.23069747924012500132079384463597-\left( \frac{1}{0.000855} \ln\left( -\ln\left( 0.3046 \right) \right) \right) = - \frac{200000 \log{\left(- \log{\left(\frac{1523}{5000} \right)} \right)}}{171} \approx -202.23069747924012500132079384463597


(10.000855ln(ln(0.3046)))=18551000000log(log(304610000))=1171200000log(log(304610000))=200000171log(log(304610000))=200000171log(log(15235000))\begin{aligned}-\left( \frac{1}{0.000855} \ln\left( -\ln\left( 0.3046 \right) \right) \right)&=- \frac{1}{\frac{855}{1000000}} \cdot \log{\left(- \log{\left(\frac{3046}{10000} \right)} \right)}\\&=- \frac{1}{\frac{171}{200000}} \cdot \log{\left(- \log{\left(\frac{3046}{10000} \right)} \right)}\\&=- \frac{200000}{171} \cdot \log{\left(- \log{\left(\frac{3046}{10000} \right)} \right)}\\&=- \frac{200000}{171} \cdot \log{\left(- \log{\left(\frac{1523}{5000} \right)} \right)}\end{aligned}