-(1/0.000855)ln[-ln(0.3046)]=
You asked:
MathBot Answer:
\[-\left( \frac{1}{0.000855} \cdot \ln\left( -\ln\left( 0.3046 \right) \right) \right) = - \frac{200000 \log{\left(- \log{\left(\frac{1523}{5000} \right)} \right)}}{171} \approx -202.23069747924012500132079384463597\]
\[\begin{aligned}-\left( \frac{1}{0.000855} \cdot \ln\left( -\ln\left( 0.3046 \right) \right) \right)& = - \frac{1}{\frac{855}{1000000}} \cdot \log{\left(- \log{\left(\frac{3046}{10000} \right)} \right)}\\& = - \frac{1}{\frac{171}{200000}} \cdot \log{\left(- \log{\left(\frac{3046}{10000} \right)} \right)}\\& = - \frac{200000}{171} \cdot \log{\left(- \log{\left(\frac{3046}{10000} \right)} \right)}\\& = - \frac{200000}{171} \cdot \log{\left(- \log{\left(\frac{1523}{5000} \right)} \right)}\end{aligned}\]