((x^4)/4)+1=3+x
You asked:
MathBot Answer:
The 4 solutions to the equation are: \[\begin{aligned}x &= 2\\x &= - \frac{2}{3} - \frac{\sqrt[3]{26 + 6 \sqrt{33}}}{3} + \frac{8}{3 \sqrt[3]{26 + 6 \sqrt{33}}} \approx -1.2955977\\x &= - \frac{2}{3} - \frac{4}{3 \sqrt[3]{26 + 6 \sqrt{33}}} + \frac{\sqrt[3]{26 + 6 \sqrt{33}}}{6} + i \left(\frac{4 \sqrt{3}}{3 \sqrt[3]{26 + 6 \sqrt{33}}} + \frac{\sqrt{3} \sqrt[3]{26 + 6 \sqrt{33}}}{6}\right) \approx -0.35220113 + 1.7214332 i\\x &= - \frac{2}{3} - \frac{4}{3 \sqrt[3]{26 + 6 \sqrt{33}}} + \frac{\sqrt[3]{26 + 6 \sqrt{33}}}{6} + i \left(- \frac{\sqrt{3} \sqrt[3]{26 + 6 \sqrt{33}}}{6} - \frac{4 \sqrt{3}}{3 \sqrt[3]{26 + 6 \sqrt{33}}}\right) \approx -0.35220113 -1.7214332 i\end{aligned}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).