2/3ab^2-[(1/2a^2b)+(-3/4a^2b)-(+1/2a^2b)]+ab^2-3/2a^2b
You asked:
Evaluate the expression: \(\frac{2}{3 a {b}^{2}} - \left(\frac{1}{2 {a}^{2} b} + \frac{-3}{4 {a}^{2} b} - \frac{1}{2 {a}^{2} b}\right) + a {b}^{2} - \frac{3}{2 {a}^{2} b}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{2}{3 a {b}^{2}} - \left(\frac{1}{2 {a}^{2} b} + \frac{-3}{4 {a}^{2} b} - \frac{1}{2 {a}^{2} b}\right) + a {b}^{2} - \frac{3}{2 {a}^{2} b} = b^{2} a + \frac{2}{3 b^{2} a} - \frac{3}{4 a^{2} b} \)
Expanded
\[\frac{2}{3 a {b}^{2}} - \left(\frac{1}{2 {a}^{2} b} + \frac{-3}{4 {a}^{2} b} - \frac{1}{2 {a}^{2} b}\right) + a {b}^{2} - \frac{3}{2 {a}^{2} b} = b^{2} a + \frac{2}{3 b^{2} a} - \frac{3}{4 a^{2} b}\]
Factored
\[\frac{2}{3 a {b}^{2}} - \left(\frac{1}{2 {a}^{2} b} + \frac{-3}{4 {a}^{2} b} - \frac{1}{2 {a}^{2} b}\right) + a {b}^{2} - \frac{3}{2 {a}^{2} b} = \frac{12 a^{3} b^{4} + 8 a - 9 b}{12 a^{2} b^{2}}\]