sen x = 1.121

asked by guest
on Jan 29, 2025 at 12:11 pm



You asked:

Solve the equation sin(x)=1.121\sin\left( x \right) = 1.121 for the variable xx.

MathBot Answer:

There are no real solutions.


The complex solutions are: x={π2+ilog(10001121112121)+2πn  |  nZ}{6.2831853n+1.5707963+0.48710498i  |  nZ}x={π2+ilog(10001121+112121)+2πn  |  nZ}{6.2831853n+1.57079630.48710498i  |  nZ}\begin{aligned}x &= \left\{\frac{\pi}{2} + i \log{\left(\frac{1000}{1121 - 11 \sqrt{2121}} \right)} + 2 \pi n\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 1.5707963 + 0.48710498 i\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\frac{\pi}{2} + i \log{\left(\frac{1000}{1121 + 11 \sqrt{2121}} \right)} + 2 \pi n\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 1.5707963 - 0.48710498 i\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.