(W-i)(0+i)/(W+i)(0-i)
You asked:
Evaluate the expression: \(\frac{\left(W - i\right) \cdot \left(0 + i\right)}{\left(W + i\right) \cdot \left(0 - i\right)}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{\left(W - i\right) \cdot \left(0 + i\right)}{\left(W + i\right) \cdot \left(0 - i\right)} = - \frac{W - i}{W + i} \)
Expanded
\[\frac{\left(W - i\right) \cdot \left(0 + i\right)}{\left(W + i\right) \cdot \left(0 - i\right)} = \frac{W i}{- W i + 1} + \frac{1}{- W i + 1}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).