(W-i)(0+i)/(W+i)(0-i)

asked by guest
on Nov 16, 2024 at 2:26 pm



You asked:

Evaluate the expression: \(\frac{\left(W - i\right) \cdot \left(0 + i\right)}{\left(W + i\right) \cdot \left(0 - i\right)}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{\left(W - i\right) \cdot \left(0 + i\right)}{\left(W + i\right) \cdot \left(0 - i\right)} = - \frac{W - i}{W + i} \)


Expanded

\[\frac{\left(W - i\right) \cdot \left(0 + i\right)}{\left(W + i\right) \cdot \left(0 - i\right)} = \frac{W i}{- W i + 1} + \frac{1}{- W i + 1}\]


\(i\) is the imaginary unit, defined as \(i^2 = -1\).