The system of equations has one solution.a = 187241 2924 a = \frac{187241}{2924} a = 2924 187241 b = 1693 2924 b = \frac{1693}{2924} b = 2924 1693
Solve by substitution:
Solve 7 a + 1193 b = 1139 7 a + 1193 b = 1139 7 a + 1193 b = 1139 for a a a . a = 1139 7 − 1193 b 7 a = \frac{1139}{7} - \frac{1193 b}{7} a = 7 1139 − 7 1193 b
Substitute 1139 7 − 1193 b 7 \frac{1139}{7} - \frac{1193 b}{7} 7 1139 − 7 1193 b for a a a in 1193 a + 203739 b = 194360 1193 a + 203739 b = 194360 1193 a + 203739 b = 194360 and simplify. 1193 a + 203739 b = 194360 1193 ( 1139 7 − 1193 b 7 ) + 203739 b = 194360 b = 1693 2924 \begin{aligned}1193 a + 203739 b &= 194360 \\ 1193 \left(\frac{1139}{7} - \frac{1193 b}{7}\right) + 203739 b &= 194360 \\ b &= \frac{1693}{2924} \end{aligned} 1193 a + 203739 b 1193 ( 7 1139 − 7 1193 b ) + 203739 b b = 194360 = 194360 = 2924 1693
Use substitution of the numerical value of b b b to get the values of a a a . a = 1139 7 − 1193 b 7 a = − 1193 ⋅ 1693 7 ⋅ 2924 + 1139 7 a = 187241 2924 \begin{aligned}a &= \frac{1139}{7} - \frac{1193 b}{7} \\ a &= - \frac{1193 \cdot 1693}{7 \cdot 2924} + \frac{1139}{7} \\ a &= \frac{187241}{2924}\end{aligned} a a a = 7 1139 − 7 1193 b = − 7 ⋅ 2924 1193 ⋅ 1693 + 7 1139 = 2924 187241
Solve by Gauss-Jordan Elimination: Begin by writing the augmented matrix of the system of equations. [ 7 1193 ∣ 1139 1193 203739 ∣ 194360 ] \begin{bmatrix}7 & 1193 &\bigm |& 1139\\1193 & 203739 &\bigm |& 194360\end{bmatrix} [ 7 1193 1193 203739 1139 194360 ]
Then use a series of elementary row operations to convert the matrix into reduced-row echelon form. The three elementary row operations are:
1. Swap the positions of any two rows.
2. Multiply any row by a nonzero scalar.
3. Multiply a row by a nonzero scalar and add it to any other row.
First, switch the rows in the matrix such that the row with the leftmost non-zero entry with the greatest magnitude is at the top.
[ 1193 203739 ∣ 194360 7 1193 ∣ 1139 ] \begin{bmatrix}1193 & 203739 &\bigm |& 194360\\7 & 1193 &\bigm |& 1139\end{bmatrix} [ 1193 7 203739 1193 194360 1139 ]
Multiply row 1 1 1 by scalar 1 1193 \frac{1}{1193} 1193 1 to make the leading term 1 1 1 .
[ 1 203739 1193 ∣ 194360 1193 7 1193 ∣ 1139 ] \begin{bmatrix}1 & \frac{203739}{1193} &\bigm |& \frac{194360}{1193}\\7 & 1193 &\bigm |& 1139\end{bmatrix} [ 1 7 1193 203739 1193 1193 194360 1139 ]
Multiply row 1 1 1 by scalar − 7 -7 − 7 and add it to row 2 2 2 .
[ 1 203739 1193 ∣ 194360 1193 0 − 2924 1193 ∣ − 1693 1193 ] \begin{bmatrix}1 & \frac{203739}{1193} &\bigm |& \frac{194360}{1193}\\0 & - \frac{2924}{1193} &\bigm |& - \frac{1693}{1193}\end{bmatrix} [ 1 0 1193 203739 − 1193 2924 1193 194360 − 1193 1693 ]
Multiply row 2 2 2 by scalar − 1193 2924 - \frac{1193}{2924} − 2924 1193 to make the leading term 1 1 1 .
[ 1 203739 1193 ∣ 194360 1193 0 1 ∣ 1693 2924 ] \begin{bmatrix}1 & \frac{203739}{1193} &\bigm |& \frac{194360}{1193}\\0 & 1 &\bigm |& \frac{1693}{2924}\end{bmatrix} [ 1 0 1193 203739 1 1193 194360 2924 1693 ]
Multiply row 2 2 2 by scalar − 203739 1193 - \frac{203739}{1193} − 1193 203739 and add it to row 1 1 1 .
[ 1 0 ∣ 187241 2924 0 1 ∣ 1693 2924 ] \begin{bmatrix}1 & 0 &\bigm |& \frac{187241}{2924}\\0 & 1 &\bigm |& \frac{1693}{2924}\end{bmatrix} [ 1 0 0 1 2924 187241 2924 1693 ]
Once the matrix is in reduced-row echelon form, convert the matrix back into linear equations to find the solution. 1 ⋅ a + 0 ⋅ b = 187241 2924 a = 187241 2924 \begin{aligned}1 \cdot a+ 0 \cdot b = \frac{187241}{2924} \\ a = \frac{187241}{2924}\end{aligned} 1 ⋅ a + 0 ⋅ b = 2924 187241 a = 2924 187241 0 ⋅ a + 1 ⋅ b = 1693 2924 b = 1693 2924 \begin{aligned}0 \cdot a+ 1 \cdot b = \frac{1693}{2924} \\ b = \frac{1693}{2924}\end{aligned} 0 ⋅ a + 1 ⋅ b = 2924 1693 b = 2924 1693
Solve by matrix inversion: In cases where the coefficient matrix of the system of equations is invertible, we can use the inverse to solve the system. Use this method with care as matrix inversion can be numerically unstable for ill-conditioned matrices.
Express the linear equations in the form A × X = B A \times X = B A × X = B where A A A is the coefficient matrix, X X X is the matrix of unknowns, and B B B is the constant matrix.[ 7 1193 1193 203739 ] × [ a b ] = [ 1139 194360 ] \left[\begin{matrix}7 & 1193\\1193 & 203739\end{matrix}\right] \times \left[\begin{matrix}a\\b\end{matrix}\right] = \left[\begin{matrix}1139\\194360\end{matrix}\right] [ 7 1193 1193 203739 ] × [ a b ] = [ 1139 194360 ]
The product of A A A and its inverse A − 1 A^{-1} A − 1 is the identity matrix. Any matrix multiplied by the identity matrix remains unchanged, so this yields the matrix of unknowns on the left hand side of the equation, and the solution matrix on the right. A × X = B A − 1 × A × X = A − 1 × B I × X = A − 1 × B X = A − 1 × B \begin{aligned} A \times X &= B\\ A^{-1} \times A \times X &= A^{-1} \times B \\ I \times X &= A^{-1} \times B \\ X &= A^{-1} \times B \end{aligned} A × X A − 1 × A × X I × X X = B = A − 1 × B = A − 1 × B = A − 1 × B
Using a computer algebra system, calculate A − 1 A^{-1} A − 1 . [ 203739 2924 − 1193 2924 − 1193 2924 7 2924 ] \left[\begin{matrix}\frac{203739}{2924} & - \frac{1193}{2924}\\- \frac{1193}{2924} & \frac{7}{2924}\end{matrix}\right] [ 2924 203739 − 2924 1193 − 2924 1193 2924 7 ]
Multiply both sides of the equation by the inverse. [ 203739 2924 − 1193 2924 − 1193 2924 7 2924 ] × [ 7 1193 1193 203739 ] × [ a b ] = [ 203739 2924 − 1193 2924 − 1193 2924 7 2924 ] × [ 1139 194360 ] \left[\begin{matrix}\frac{203739}{2924} & - \frac{1193}{2924}\\- \frac{1193}{2924} & \frac{7}{2924}\end{matrix}\right] \times \left[\begin{matrix}7 & 1193\\1193 & 203739\end{matrix}\right] \times \left[\begin{matrix}a\\b\end{matrix}\right] = \left[\begin{matrix}\frac{203739}{2924} & - \frac{1193}{2924}\\- \frac{1193}{2924} & \frac{7}{2924}\end{matrix}\right] \times \left[\begin{matrix}1139\\194360\end{matrix}\right] [ 2924 203739 − 2924 1193 − 2924 1193 2924 7 ] × [ 7 1193 1193 203739 ] × [ a b ] = [ 2924 203739 − 2924 1193 − 2924 1193 2924 7 ] × [ 1139 194360 ] [ a b ] = [ 187241 2924 1693 2924 ] \left[\begin{matrix}a\\b\end{matrix}\right] = \left[\begin{matrix}\frac{187241}{2924}\\\frac{1693}{2924}\end{matrix}\right] [ a b ] = [ 2924 187241 2924 1693 ]
a = 187241 2924 a = \frac{187241}{2924} a = 2924 187241 b = 1693 2924 b = \frac{1693}{2924} b = 2924 1693