x^4=-512

asked by guest
on Jan 25, 2025 at 3:54 pm



You asked:

Solve the equation \({x}^{4} = -512\) for the variable \(x\).

MathBot Answer:

The solutions are given by the formula: \[x = 4 \cdot \sqrt[4]{2} \cos{\left(\frac{\pi}{4} + \frac{\pi k}{2} \right)} + 4 \cdot \sqrt[4]{2} \sin{\left(\frac{\pi}{4} + \frac{\pi k}{2} \right)} i\] where \(k\) is an integer in \(0 \le k < 4\).

There are \(0\) real solutions.

There are \(4\) solutions with nonzero imaginary part.


The are no real solutions.


Solutions with nonzero imaginary part: \[\begin{aligned}x &= 2 \cdot 2^{\frac{3}{4}} + 2 \cdot 2^{\frac{3}{4}} i \\&\approx 3.3635857 + 3.3635857 i\\x &= - 2 \cdot 2^{\frac{3}{4}} + 2 \cdot 2^{\frac{3}{4}} i \\&\approx -3.3635857 + 3.3635857 i\\x &= - 2 \cdot 2^{\frac{3}{4}} - 2 \cdot 2^{\frac{3}{4}} i \\&\approx -3.3635857 -3.3635857 i\\x &= 2 \cdot 2^{\frac{3}{4}} - 2 \cdot 2^{\frac{3}{4}} i \\&\approx 3.3635857 -3.3635857 i\end{aligned}\]


\(i\) is the imaginary unit, defined as \(i^2 = -1\).