x^4=-512
You asked:
MathBot Answer:
The solutions are given by the formula: \[x = 4 \cdot \sqrt[4]{2} \cos{\left(\frac{\pi}{4} + \frac{\pi k}{2} \right)} + 4 \cdot \sqrt[4]{2} \sin{\left(\frac{\pi}{4} + \frac{\pi k}{2} \right)} i\] where \(k\) is an integer in \(0 \le k < 4\).
There are \(0\) real solutions.
There are \(4\) solutions with nonzero imaginary part.
The are no real solutions.
Solutions with nonzero imaginary part: \[\begin{aligned}x &= 2 \cdot 2^{\frac{3}{4}} + 2 \cdot 2^{\frac{3}{4}} i \\&\approx 3.3635857 + 3.3635857 i\\x &= - 2 \cdot 2^{\frac{3}{4}} + 2 \cdot 2^{\frac{3}{4}} i \\&\approx -3.3635857 + 3.3635857 i\\x &= - 2 \cdot 2^{\frac{3}{4}} - 2 \cdot 2^{\frac{3}{4}} i \\&\approx -3.3635857 -3.3635857 i\\x &= 2 \cdot 2^{\frac{3}{4}} - 2 \cdot 2^{\frac{3}{4}} i \\&\approx 3.3635857 -3.3635857 i\end{aligned}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).