4^ $\sqrt{x}$ = $\sqrt{32}$
You asked:
Solve the equation \({4}^{\sqrt{x}} = \sqrt{32}\) for the variable \(x\).
MathBot Answer:
The solution is: \[x = \frac{\log{\left(4 \sqrt{2} \right)}^{2}}{\log{\left(4 \right)}^{2}} \approx 1.5625\]
4^ $\sqrt{x}$ = $\sqrt{32}$
You asked:
MathBot Answer:
The solution is: \[x = \frac{\log{\left(4 \sqrt{2} \right)}^{2}}{\log{\left(4 \right)}^{2}} \approx 1.5625\]