sin^2(2x)-cos(2x)-1=0
You asked:
MathBot Answer:
The real solutions are: \[\begin{aligned}x &= \left\{\frac{\pi \left(1 + 4 n\right)}{2}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 1.5707963\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\frac{\pi \left(3 + 4 n\right)}{2}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 4.712389\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\frac{\pi \left(5 + 8 n\right)}{4}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 3.9269908\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\frac{\pi \left(3 + 8 n\right)}{4}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 2.3561945\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\frac{\pi \left(7 + 8 n\right)}{4}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 5.4977871\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\frac{\pi \left(1 + 8 n\right)}{4}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 0.78539816\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}\]