x^2 -2.038x +3.09=0

asked by guest
on Apr 13, 2025 at 4:52 pm



You asked:

Solve the equation x22.038x+3.09=0{x}^{2} - 2.038 x + 3.09 = 0 for the variable xx.

MathBot Answer:

x=10191000+i205163910001.019+1.4323544ix=10191000i205163910001.0191.4323544i\begin{aligned}x &= \frac{1019}{1000} + \frac{i \sqrt{2051639}}{1000} \approx 1.019 + 1.4323544 i\\x &= \frac{1019}{1000} - \frac{i \sqrt{2051639}}{1000} \approx 1.019 - 1.4323544 i\end{aligned}

Solve by quadratic formula:

Simplify the left hand side of the equation into standard form: x2x(2+3811000)+3+91100=0x2+309100x(2+19500)=0x2+309100x1019500=0x2+(1019)x500+309100=0x21019x500+309100=0\begin{aligned}x^{2} - x \left(2 + 38 \cdot \frac{1}{1000}\right) + 3 + 9 \cdot \frac{1}{100} &= 0\\x^{2} + \frac{309}{100} - x \left(2 + \frac{19}{500}\right) &= 0\\x^{2} + \frac{309}{100} - \frac{x 1019}{500} &= 0\\x^{2} + \frac{\left(-1019\right) x}{500} + \frac{309}{100} &= 0\\x^{2} - \frac{1019 x}{500} + \frac{309}{100} &= 0\end{aligned}

Given a quadratic equation ax2+bx+c=0a x^{2} + b x + c = 0, where aa, bb, cc are constants and a0a \ne 0, the solutions are given by the quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} In this case a=1a=1, b=1019500b=- \frac{1019}{500}, and c=309100c=\frac{309}{100}.

The discriminant is the quantity under the square root sign in the quadratic formula, and its sign determines the number of solutions to the quadratic equation when the coefficients are real. The discriminant is:b24ac=(1019500)24309100=2051639250000<0b^{2}-4ac = \left(- \frac{1019}{500}\right)^{2} - 4 \cdot \frac{309}{100}=- \frac{2051639}{250000} < 0 The discriminant is less than zero, so this quadratic equation has two solutions with non-zero imaginary part.

The two solutions are: x=(1)(1019500)+205163925000021=10191000+2051639i10001.019+1.4323544ix = \frac{\left(-1\right) \left(- \frac{1019}{500}\right) + \sqrt{- \frac{2051639}{250000}}}{2 \cdot 1} = \frac{1019}{1000} + \frac{\sqrt{2051639} i}{1000} \approx 1.019 + 1.4323544 i x=(1)(1019500)205163925000021=101910002051639i10001.0191.4323544ix = \frac{\left(-1\right) \left(- \frac{1019}{500}\right) - \sqrt{- \frac{2051639}{250000}}}{2 \cdot 1} = \frac{1019}{1000} - \frac{\sqrt{2051639} i}{1000} \approx 1.019 -1.4323544 i


ii is the imaginary unit, defined as i2=1i^2 = -1.