cos(2x)=3/2

asked by guest
on Mar 28, 2025 at 8:53 am



You asked:

Solve the equation cos(2x)=32\cos\left( 2 x \right) = \frac{3}{2} for the variable xx.

MathBot Answer:

There are no real solutions.


The complex solutions are: x={πn+ilog(2)2ilog(3+5)2  |  nZ}{3.1415927n0.48121183i  |  nZ}x={πn+ilog(2)2ilog(35)2  |  nZ}{3.1415927n+0.48121183i  |  nZ}\begin{aligned}x &= \left\{\pi n + \frac{i \log{\left(2 \right)}}{2} - \frac{i \log{\left(3 + \sqrt{5} \right)}}{2}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{3.1415927 n - 0.48121183 i\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\pi n + \frac{i \log{\left(2 \right)}}{2} - \frac{i \log{\left(3 - \sqrt{5} \right)}}{2}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{3.1415927 n + 0.48121183 i\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.