solve 9x^4 -444.15x^2 + 5479.5 = 0
You asked:
Solve the equation \(9 {x}^{4} - 444.15 {x}^{2} + 5479.5 = 0\) for the variable \(x\).
MathBot Answer:
The 4 solutions to the equation are: \[\begin{aligned}x &= \sqrt{\frac{987}{40} - \frac{\sqrt{321}}{120}} \approx 4.9523425\\x &= \sqrt{\frac{987}{40} + \frac{\sqrt{321}}{120}} \approx 4.9823994\\x &= - \sqrt{\frac{987}{40} - \frac{\sqrt{321}}{120}} \approx -4.9523425\\x &= - \sqrt{\frac{987}{40} + \frac{\sqrt{321}}{120}} \approx -4.9823994\end{aligned}\]