determine the general solution of: tanxsinx + cosxtanx =0

asked by guest
on Mar 25, 2025 at 1:17 pm



You asked:

Solve the equation tan(x)sin(x)+cos(x)tan(x)=0\tan\left( x \right) \sin\left( x \right) + \cos\left( x \right) \tan\left( x \right) = 0 for the variable xx.

MathBot Answer:

The real solutions are: x={2πn  |  nZ}{6.2831853n  |  nZ}x={π(1+2n)  |  nZ}{6.2831853n+3.1415927  |  nZ}x={π(3+8n)4  |  nZ}{6.2831853n+2.3561945  |  nZ}x={π(7+8n)4  |  nZ}{6.2831853n+5.4977871  |  nZ}\begin{aligned}x &= \left\{2 \pi n\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\pi \left(1 + 2 n\right)\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 3.1415927\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\frac{\pi \left(3 + 8 n\right)}{4}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 2.3561945\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\frac{\pi \left(7 + 8 n\right)}{4}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 5.4977871\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}