Prove that (P → Q) ∧ (R →Q) ⟺ (P 𝗏 R ) → Q.

asked by guest
on Mar 30, 2025 at 10:44 pm



MathBot Answer:

Logic Expression
Symbol: ((PQ)(RQ))((PR)Q)\left(\left(P \rightarrow Q\right) \wedge \left(R \rightarrow Q\right)\right) \leftrightarrow \left(\left(P \vee R\right) \rightarrow Q\right)
Text: ((P implies Q) and (R implies Q)) if and only if ((P or R) implies Q)\left(\left(P \text{ implies } Q\right) \text{ and } \left(R \text{ implies } Q\right)\right) \text{ if and only if } \left(\left(P \text{ or } R\right) \text{ implies } Q\right)


Classification tautology


Truth Table

Legend

PPQQRRPQP \rightarrow QRQR \rightarrow Q(PQ)(RQ)\left(P \rightarrow Q\right) \wedge \left(R \rightarrow Q\right)PRP \vee R(PR)Q\left(P \vee R\right) \rightarrow Q((PQ)(RQ))((PR)Q)\left(\left(P \rightarrow Q\right) \wedge \left(R \rightarrow Q\right)\right) \leftrightarrow \left(\left(P \vee R\right) \rightarrow Q\right)
111111111
110111111
101000101
100010101
011111111
010111011
001100101
000111011
T/F

Simplification((PQ)(RQ))((PR)Q)((¬PQ)(RQ))((PR)Q)Conditional Equivalence((¬PQ)(¬RQ))((PR)Q)Conditional Equivalence((¬PQ)(¬RQ))(¬(PR)Q)Conditional Equivalence((¬PQ)(¬RQ))((¬P¬R)Q)De Morgan’s Law(((¬PQ)(¬RQ))¬((¬P¬R)Q))(¬((¬PQ)(¬RQ))(¬P¬R)Q)Biconditional Equivalence(((¬PQ)(¬RQ))(¬(¬P¬R)¬Q))(¬((¬PQ)(¬RQ))(¬P¬R)Q)De Morgan’s Law(((¬PQ)(¬RQ))(¬(¬(PR))¬Q))(¬((¬PQ)(¬RQ))(¬P¬R)Q)De Morgan’s Law(((¬PQ)(¬RQ))((PR)¬Q))(¬((¬PQ)(¬RQ))(¬P¬R)Q)Double Negation Law(((¬PQ)(¬RQ))((PR)¬Q))(¬(¬PQ)¬(¬RQ)(¬P¬R)Q)De Morgan’s Law(((¬PQ)(¬RQ))((PR)¬Q))((¬(¬P)¬Q)¬(¬RQ)(¬P¬R)Q)De Morgan’s Law(((¬PQ)(¬RQ))((PR)¬Q))((P¬Q)¬(¬RQ)(¬P¬R)Q)Double Negation Law(((¬PQ)(¬RQ))((PR)¬Q))((P¬Q)(¬(¬R)¬Q)(¬P¬R)Q)De Morgan’s Law(((¬PQ)(¬RQ))((PR)¬Q))((P¬Q)(R¬Q)(¬P¬R)Q)Double Negation Law(((¬PQ)(¬RQ))((PR)¬Q))((P¬Q)Q(R¬Q)(¬P¬R))Commutative Law(((¬PQ)(¬RQ))((PR)¬Q))(PQ(R¬Q)(¬P¬R))Redundancy Law (2)(((¬PQ)(¬RQ))((PR)¬Q))(PQR(¬P¬R))Redundancy Law (2)(((¬PQ)(¬RQ))((PR)¬Q))(PQR¬P)Redundancy Law (2)(((¬PQ)(¬RQ))((PR)¬Q))(P¬PQR)Commutative Law(((¬PQ)(¬RQ))((PR)¬Q))(TrueQR)Complement Law(((¬PQ)(¬RQ))((PR)¬Q))TrueDomination Law((¬PQ)(¬RQ))((PR)¬Q)Identity LawQ(¬P¬R)((PR)¬Q)Distributive LawQ((PR)¬Q)(¬P¬R)Commutative LawQPR(¬P¬R)Redundancy Law (2)QPR¬PRedundancy Law (2)QP¬PRCommutative LawQTrueRComplement LawTrueDomination Law\begin{gathered} \left(\left(P \rightarrow Q\right) \wedge \left(R \rightarrow Q\right)\right) \leftrightarrow \left(\left(P \vee R\right) \rightarrow Q\right) & \equiv & \left(\left(\neg P \vee Q\right) \wedge \left(R \rightarrow Q\right)\right) \leftrightarrow \left(\left(P \vee R\right) \rightarrow Q\right) & \text{Conditional Equivalence} \\ & \equiv & \left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \leftrightarrow \left(\left(P \vee R\right) \rightarrow Q\right) & \text{Conditional Equivalence} \\ & \equiv & \left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \leftrightarrow \left(\neg \left(P \vee R\right) \vee Q\right) & \text{Conditional Equivalence} \\ & \equiv & \left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \leftrightarrow \left(\left(\neg P \wedge \neg R\right) \vee Q\right) & \text{De Morgan's Law} \\ & \equiv & \left(\left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \neg \left(\left(\neg P \wedge \neg R\right) \vee Q\right)\right) \wedge \left(\neg \left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\neg P \wedge \neg R\right) \vee Q\right) & \text{Biconditional Equivalence} \\ & \equiv & \left(\left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\neg \left(\neg P \wedge \neg R\right) \wedge \neg Q\right)\right) \wedge \left(\neg \left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\neg P \wedge \neg R\right) \vee Q\right) & \text{De Morgan's Law} \\ & \equiv & \left(\left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\neg \left(\neg \left(P \vee R\right)\right) \wedge \neg Q\right)\right) \wedge \left(\neg \left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\neg P \wedge \neg R\right) \vee Q\right) & \text{De Morgan's Law} \\ & \equiv & \left(\left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\left(P \vee R\right) \wedge \neg Q\right)\right) \wedge \left(\neg \left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\neg P \wedge \neg R\right) \vee Q\right) & \text{Double Negation Law} \\ & \equiv & \left(\left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\left(P \vee R\right) \wedge \neg Q\right)\right) \wedge \left(\neg \left(\neg P \vee Q\right) \vee \neg \left(\neg R \vee Q\right) \vee \left(\neg P \wedge \neg R\right) \vee Q\right) & \text{De Morgan's Law} \\ & \equiv & \left(\left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\left(P \vee R\right) \wedge \neg Q\right)\right) \wedge \left(\left(\neg \left(\neg P\right) \wedge \neg Q\right) \vee \neg \left(\neg R \vee Q\right) \vee \left(\neg P \wedge \neg R\right) \vee Q\right) & \text{De Morgan's Law} \\ & \equiv & \left(\left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\left(P \vee R\right) \wedge \neg Q\right)\right) \wedge \left(\left(P \wedge \neg Q\right) \vee \neg \left(\neg R \vee Q\right) \vee \left(\neg P \wedge \neg R\right) \vee Q\right) & \text{Double Negation Law} \\ & \equiv & \left(\left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\left(P \vee R\right) \wedge \neg Q\right)\right) \wedge \left(\left(P \wedge \neg Q\right) \vee \left(\neg \left(\neg R\right) \wedge \neg Q\right) \vee \left(\neg P \wedge \neg R\right) \vee Q\right) & \text{De Morgan's Law} \\ & \equiv & \left(\left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\left(P \vee R\right) \wedge \neg Q\right)\right) \wedge \left(\left(P \wedge \neg Q\right) \vee \left(R \wedge \neg Q\right) \vee \left(\neg P \wedge \neg R\right) \vee Q\right) & \text{Double Negation Law} \\ & \equiv & \left(\left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\left(P \vee R\right) \wedge \neg Q\right)\right) \wedge \left(\left(P \wedge \neg Q\right) \vee Q \vee \left(R \wedge \neg Q\right) \vee \left(\neg P \wedge \neg R\right)\right) & \text{Commutative Law} \\ & \equiv & \left(\left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\left(P \vee R\right) \wedge \neg Q\right)\right) \wedge \left(P \vee Q \vee \left(R \wedge \neg Q\right) \vee \left(\neg P \wedge \neg R\right)\right) & \text{Redundancy Law (2)} \\ & \equiv & \left(\left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\left(P \vee R\right) \wedge \neg Q\right)\right) \wedge \left(P \vee Q \vee R \vee \left(\neg P \wedge \neg R\right)\right) & \text{Redundancy Law (2)} \\ & \equiv & \left(\left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\left(P \vee R\right) \wedge \neg Q\right)\right) \wedge \left(P \vee Q \vee R \vee \neg P\right) & \text{Redundancy Law (2)} \\ & \equiv & \left(\left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\left(P \vee R\right) \wedge \neg Q\right)\right) \wedge \left(P \vee \neg P \vee Q \vee R\right) & \text{Commutative Law} \\ & \equiv & \left(\left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\left(P \vee R\right) \wedge \neg Q\right)\right) \wedge \left(\text{True} \vee Q \vee R\right) & \text{Complement Law} \\ & \equiv & \left(\left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\left(P \vee R\right) \wedge \neg Q\right)\right) \wedge \text{True} & \text{Domination Law} \\ & \equiv & \left(\left(\neg P \vee Q\right) \wedge \left(\neg R \vee Q\right)\right) \vee \left(\left(P \vee R\right) \wedge \neg Q\right) & \text{Identity Law} \\ & \equiv & Q \vee \left(\neg P \wedge \neg R\right) \vee \left(\left(P \vee R\right) \wedge \neg Q\right) & \text{Distributive Law} \\ & \equiv & Q \vee \left(\left(P \vee R\right) \wedge \neg Q\right) \vee \left(\neg P \wedge \neg R\right) & \text{Commutative Law} \\ & \equiv & Q \vee P \vee R \vee \left(\neg P \wedge \neg R\right) & \text{Redundancy Law (2)} \\ & \equiv & Q \vee P \vee R \vee \neg P & \text{Redundancy Law (2)} \\ & \equiv & Q \vee P \vee \neg P \vee R & \text{Commutative Law} \\ & \equiv & Q \vee \text{True} \vee R & \text{Complement Law} \\ & \equiv & \text{True} & \text{Domination Law} \end{gathered} Note: Solution may not be as simplified as possible.


Conjunctive Normal FormTrue\text{True}


Note 1: These equivalences and tautologies are used to generate the above steps.
Note 2: Two logical statements are logically equivalent if they always produce the same truth value. Consequently, p ≡ q is same as saying p ↔ q is a tautology. EquivalenceAbsorption Lawp(pq)pp(pq)pBiconditional Equivalencepq(p¬q)(¬pq)pq(pq)(¬p¬q)Biconditional SimplificationppTruepTruepp¬pFalsepFalse¬pComplement Lawp¬pFalsep¬pTrueConditional Equivalencepq¬pqConditional SimplificationppTruepTrueTruepFalse¬pp¬p¬pTrueppFalsepTrue¬pppConsensus Law(pq)(¬pr)(qr)(pq)(¬pr)(pq)(¬pr)(qr)(pq)(¬pr)De Morgan’s Law¬(pq)¬p¬q¬(pq)¬p¬qDistributive Lawp(qr)(pq)(pr)p(qr)(pq)(pr)(pq)(rs)(pr)(ps)(qr)(qs)(pq)(rs)(pr)(ps)(qr)(qs)Domination LawpTrueTruepFalseFalseDouble Negation Law¬(¬p)pIdempotent LawppppppIdentity LawpTrueppFalsepNANDpq¬(pq)Negation Law¬TrueFalse¬FalseTrueNORpq¬(pq)Negation of Biconditional Equivalence¬(pq)(pq)(¬p¬q)¬(pq)(p¬q)(¬pq)Negation of Conditional Equivalence¬(pq)p¬qRedundancy Law (1)(pq)(p¬q)p(pq)(p¬q)pRedundancy Law (2)p(¬pq)pqp(¬pq)pqXORpq(pq)(¬p¬q)pq(p¬q)(¬pq)XOR SimplificationppFalsepTrue¬pp¬pTruepFalsepXNORpq¬(pq)\begin{array}{c|c}\textbf{Equivalence} \\ \hline \text{Absorption Law} & \begin{gathered} p \wedge \left(p \vee q\right) \equiv p \\ p \vee \left(p \wedge q\right) \equiv p \end{gathered} \\ \hline \text{Biconditional Equivalence} & \begin{gathered} p \leftrightarrow q \equiv \left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right) \\ p \leftrightarrow q \equiv \left(p \wedge q\right) \vee \left(\neg p \wedge \neg q\right) \end{gathered} \\ \hline \text{Biconditional Simplification} & \begin{gathered} p \leftrightarrow p \equiv \text{True} & p \leftrightarrow \text{True} \equiv p \\ p \leftrightarrow \neg p \equiv \text{False} & p \leftrightarrow \text{False} \equiv \neg p \end{gathered} \\ \hline \text{Complement Law} & \begin{gathered} p \wedge \neg p \equiv \text{False} \\ p \vee \neg p \equiv \text{True} \end{gathered} \\ \hline \text{Conditional Equivalence} & p \rightarrow q \equiv \neg p \vee q \\ \hline \text{Conditional Simplification} & \begin{gathered} p \rightarrow p \equiv \text{True} & p \rightarrow \text{True} \equiv \text{True} & p \rightarrow \text{False} \equiv \neg p \\ p \rightarrow \neg p \equiv \neg p & \text{True} \rightarrow p \equiv p & \text{False} \rightarrow p \equiv \text{True} \\ \neg p \rightarrow p \equiv p\end{gathered} \\ \hline \text{Consensus Law} & \begin{gathered} \left(p \vee q\right) \wedge \left(\neg p \vee r\right) \wedge \left(q \vee r\right) \equiv \left(p \vee q\right) \wedge \left(\neg p \vee r\right) \\ \left(p \wedge q\right) \vee \left(\neg p \wedge r\right) \vee \left(q \wedge r\right) \equiv \left(p \wedge q\right) \vee \left(\neg p \wedge r\right) \end{gathered} \\ \hline \text{De Morgan's Law} & \begin{gathered} \neg \left(p \wedge q\right) \equiv \neg p \vee \neg q \\ \neg \left(p \vee q\right) \equiv \neg p \wedge \neg q \end{gathered} \\ \hline \text{Distributive Law} & \begin{gathered} p \wedge \left(q \vee r\right) \equiv \left(p \wedge q\right) \vee \left(p \wedge r\right) \\ p \vee \left(q \wedge r\right) \equiv \left(p \vee q\right) \wedge \left(p \vee r\right) \\ \left(p \vee q\right) \wedge \left(r \vee s\right) \equiv \left(p \wedge r\right) \vee \left(p \wedge s\right) \vee \left(q \wedge r\right) \vee \left(q \wedge s\right) \\ \left(p \wedge q\right) \vee \left(r \wedge s\right) \equiv \left(p \vee r\right) \wedge \left(p \vee s\right) \wedge \left(q \vee r\right) \wedge \left(q \vee s\right) \end{gathered} \\ \hline \text{Domination Law} & \begin{gathered} p \vee \text{True} \equiv \text{True} \\ p \wedge \text{False} \equiv \text{False} \end{gathered} \\ \hline \text{Double Negation Law} & \neg \left(\neg p\right) \equiv p \\ \hline \text{Idempotent Law} & \begin{gathered} p \wedge p \equiv p \\ p \vee p \equiv p \end{gathered} \\ \hline \text{Identity Law} & \begin{gathered} p \wedge \text{True} \equiv p \\ p \vee \text{False} \equiv p \end{gathered} \\ \hline \text{NAND} & p \uparrow q \equiv \neg \left(p \wedge q\right) \\ \hline \text{Negation Law} & \begin{gathered} \neg \text{True} \equiv \text{False} \\ \neg \text{False} \equiv \text{True} \end{gathered} \\ \hline \text{NOR} & p \downarrow q \equiv \neg \left(p \vee q\right) \\ \hline \text{Negation of Biconditional Equivalence} & \begin{gathered} \neg \left(p \leftrightarrow q\right) \equiv \left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right) \\ \neg \left(p \leftrightarrow q\right) \equiv \left(p \wedge \neg q\right) \vee \left(\neg p \wedge q\right) \end{gathered} \\ \hline \text{Negation of Conditional Equivalence} & \neg \left(p \rightarrow q\right) \equiv p \wedge \neg q \\ \hline \text{Redundancy Law (1)} & \begin{gathered} \left(p \vee q\right) \wedge \left(p \vee \neg q\right) \equiv p \\ \left(p \wedge q\right) \vee \left(p \wedge \neg q\right) \equiv p \end{gathered} \\ \hline \text{Redundancy Law (2)} & \begin{gathered} p \wedge \left(\neg p \vee q\right) \equiv p \wedge q \\ p \vee \left(\neg p \wedge q\right) \equiv p \vee q \end{gathered} \\ \hline \text{XOR} & \begin{gathered} p \oplus q \equiv \left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right) \\ p \oplus q \equiv \left(p \wedge \neg q\right) \vee \left(\neg p \wedge q\right) \end{gathered} \\ \hline \text{XOR Simplification} & \begin{gathered} p \oplus p \equiv \text{False} & p \oplus \text{True} \equiv \neg p \\ p \oplus \neg p \equiv \text{True} & p \oplus \text{False} \equiv p \end{gathered} \\ \hline \text{XNOR} & p \odot q \equiv \neg \left(p \oplus q\right) \end{array} TautologyConjunctive Simplification(pq)p(pq)qContradiction¬(p¬p)Contrapositive(pq)(¬q¬p)Disjunctive Additionp(pq)q(pq)Disjunctive Syllogism((pq)¬q)p((pq)¬p)qHypothetical Syllogism((pq)(qr))(pr)Modus Ponens(p(pq))qModus Tollens(¬q(pq))¬p\begin{array}{c|c}\textbf{Tautology} \\ \hline \text{Conjunctive Simplification} & \begin{gathered} \left(p \wedge q\right) \rightarrow p \\ \left(p \wedge q\right) \rightarrow q \end{gathered} \\ \hline \text{Contradiction} & \neg \left(p \wedge \neg p\right) \\ \hline \text{Contrapositive} & \left(p \rightarrow q\right) \leftrightarrow \left(\neg q \rightarrow \neg p\right) \\ \hline \text{Disjunctive Addition} & \begin{gathered} p \rightarrow \left(p \vee q\right) \\ q \rightarrow \left(p \vee q\right) \end{gathered} \\ \hline \text{Disjunctive Syllogism} & \begin{gathered} \left(\left(p \vee q\right) \wedge \neg q\right) \rightarrow p \\ \left(\left(p \vee q\right) \wedge \neg p\right) \rightarrow q \end{gathered} \\ \hline \text{Hypothetical Syllogism} & \left(\left(p \rightarrow q\right) \wedge \left(q \rightarrow r\right)\right) \rightarrow \left(p \rightarrow r\right) \\ \hline \text{Modus Ponens} & \left(p \wedge \left(p \rightarrow q\right)\right) \rightarrow q \\ \hline \text{Modus Tollens} & \left(\neg q \wedge \left(p \rightarrow q\right)\right) \rightarrow \neg p \end{array}