(x^2+8x+7)(x+3)
asked by guest on Apr 01, 2025 at 12:43 pm
You asked:
MathBot Answer:
(x2+8x+7)(x+3)=(x+3)(x2+8x+7)\displaystyle \left({x}^{2} + 8 x + 7\right) \left(x + 3\right) = \left(x + 3\right) \left(x^{2} + 8 x + 7\right) (x2+8x+7)(x+3)=(x+3)(x2+8x+7)
(x2+8x+7)(x+3)=x3+11x2+31x+21\left({x}^{2} + 8 x + 7\right) \left(x + 3\right) = x^{3} + 11 x^{2} + 31 x + 21(x2+8x+7)(x+3)=x3+11x2+31x+21
(x2+8x+7)(x+3)=(x+1)(x+3)(x+7)\left({x}^{2} + 8 x + 7\right) \left(x + 3\right) = \left(x + 1\right) \left(x + 3\right) \left(x + 7\right)(x2+8x+7)(x+3)=(x+1)(x+3)(x+7)