(x^2+8x+7)(x+3)

asked by guest
on Apr 01, 2025 at 12:43 pm



You asked:

Evaluate the expression: (x2+8x+7)(x+3)\left({x}^{2} + 8 x + 7\right) \left(x + 3\right)

MathBot Answer:

Evaluated



(x2+8x+7)(x+3)=(x+3)(x2+8x+7)\displaystyle \left({x}^{2} + 8 x + 7\right) \left(x + 3\right) = \left(x + 3\right) \left(x^{2} + 8 x + 7\right)


Expanded

(x2+8x+7)(x+3)=x3+11x2+31x+21\left({x}^{2} + 8 x + 7\right) \left(x + 3\right) = x^{3} + 11 x^{2} + 31 x + 21


Factored

(x2+8x+7)(x+3)=(x+1)(x+3)(x+7)\left({x}^{2} + 8 x + 7\right) \left(x + 3\right) = \left(x + 1\right) \left(x + 3\right) \left(x + 7\right)