\sum _{n=1}^{2024}\:\sqrt{n+1}-\sqrt{n}

asked by guest
on Jan 26, 2025 at 11:12 pm



You asked:

Evaluate the expression: \(\sum_{n = 1}^{2024} {\sqrt{n + 1} - \sqrt{n}}\)

MathBot Answer:

\[\sum_{n=1}^{2024} \left(- \sqrt{n} + \sqrt{n + 1}\right) = 44\]