If 10^4 = 10^2 log10 𝑥
then find x
You asked:
Solve the equation \({10}^{4} = {10}^{2} \log\left( 10 \right) \cdot x\) for the variable \(x\).
MathBot Answer:
The solution is: \[x = \frac{100}{\log{\left(10 \right)}} \approx 43.429448\]
\[\begin{aligned}10000 &= x 100 \log{\left(10 \right)}\\x \left(- 100 \log{\left(10 \right)}\right) &= -10000\\x &= \frac{100}{\log{\left(10 \right)}}\end{aligned}\]