given that x = 7 y = -4 z = -2

evaluate 3x22y3z3\frac{3x^2-2y}{3z^3}

asked by guest
on Nov 18, 2024 at 6:23 pm



MathBot Answer:

3x22y3z3=15524\frac{3 {x}^{2} - 2 y}{3 {z}^{3}} = - \frac{155}{24}


3x22y3z3=(3722(4))3(2)3=(2(4)+349)3(2)3=(2(4)+147)3(2)3=(2(4)+147)83=8+14783=15524\begin{aligned}\frac{3 x^{2} - 2 y}{3 z^{3}}&=\frac{\left(3 \cdot 7^{2} - 2 \left(-4\right)\right)}{3 \left(-2\right)^{3}}\\&=\frac{\left(- 2 \left(-4\right) + 3 \cdot 49\right)}{3 \left(-2\right)^{3}}\\&=\frac{\left(- 2 \left(-4\right) + 147\right)}{3 \left(-2\right)^{3}}\\&=-\frac{\left(- 2 \left(-4\right) + 147\right)}{8 \cdot 3}\\&=-\frac{8 + 147}{8 \cdot 3}\\&=- \frac{155}{24}\end{aligned}