sin²90⁰cos²90⁰

asked by guest
on Jan 16, 2025 at 3:45 am



You asked:

Evaluate the expression: sin(900)2cos(900)2{\sin\left( {90}^{0} \right)}^{2} {\cos\left( {90}^{0} \right)}^{2}

MathBot Answer:

sin(900)2cos(900)2=sin2(1)cos2(1)0.20670545260795148932989602288722{\sin\left( {90}^{0} \right)}^{2} {\cos\left( {90}^{0} \right)}^{2} = \sin^{2}{\left(1 \right)} \cos^{2}{\left(1 \right)} \approx 0.20670545260795148932989602288722


sin(900)2cos(900)2=sin2(900)cos2(900)=sin2(1)cos2(900)=sin2(1)cos2(1)=cos2(1)sin2(1)\begin{aligned}{\sin\left( {90}^{0} \right)}^{2} {\cos\left( {90}^{0} \right)}^{2}&=\sin^{2}{\left(90^{0} \right)} \cdot \cos^{2}{\left(90^{0} \right)}\\&=\sin^{2}{\left(1 \right)} \cdot \cos^{2}{\left(90^{0} \right)}\\&=\sin^{2}{\left(1 \right)} \cdot \cos^{2}{\left(1 \right)}\\&=\cos^{2}{\left(1 \right)} \cdot \sin^{2}{\left(1 \right)}\end{aligned}