sin²90⁰cos²90⁰

asked by guest
on Jan 16, 2025 at 3:45 am



You asked:

Evaluate the expression: \({\sin\left( {90}^{0} \right)}^{2} {\cos\left( {90}^{0} \right)}^{2}\)

MathBot Answer:

\[{\sin\left( {90}^{0} \right)}^{2} {\cos\left( {90}^{0} \right)}^{2} = \sin^{2}{\left(1 \right)} \cos^{2}{\left(1 \right)} \approx 0.20670545260795148932989602288722\]


\[\begin{aligned}{\sin\left( {90}^{0} \right)}^{2} {\cos\left( {90}^{0} \right)}^{2}& = \sin^{2}{\left(90^{0} \right)} \cdot \cos^{2}{\left(90^{0} \right)}\\& = \sin^{2}{\left(1 \right)} \cdot \cos^{2}{\left(90^{0} \right)}\\& = \sin^{2}{\left(1 \right)} \cdot \cos^{2}{\left(1 \right)}\\& = \cos^{2}{\left(1 \right)} \cdot \sin^{2}{\left(1 \right)}\end{aligned}\]