(y-3)(y-5)/(5-y)(3+y)

asked by guest
on Nov 13, 2024 at 7:57 pm



You asked:

Evaluate the expression: \(\frac{\left(y - 3\right) \cdot \left(y - 5\right)}{\left(5 - y\right) \cdot \left(3 + y\right)}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{\left(y - 3\right) \cdot \left(y - 5\right)}{\left(5 - y\right) \cdot \left(3 + y\right)} = \frac{\left(y - 5\right) \left(y - 3\right)}{\left(5 - y\right) \left(y + 3\right)} \)


Expanded

\[\frac{\left(y - 3\right) \cdot \left(y - 5\right)}{\left(5 - y\right) \cdot \left(3 + y\right)} = \frac{y^{2}}{- y^{2} + 2 y + 15} - \frac{8 y}{- y^{2} + 2 y + 15} + \frac{15}{- y^{2} + 2 y + 15}\]


Factored

\[\frac{\left(y - 3\right) \cdot \left(y - 5\right)}{\left(5 - y\right) \cdot \left(3 + y\right)} = - \frac{y - 3}{y + 3}\]